NEW RELATIONS FOR 2-DIMENSIONAL HERMITE-POLYNOMIALS

被引:42
作者
DODONOV, VV [1 ]
MANKO, VI [1 ]
机构
[1] UNIV NAPLES,DIPARTIMENTO SCI FIS,I-80134 NAPLES,ITALY
关键词
D O I
10.1063/1.530853
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effective formulas reducing the two-dimensional Hermite polynomials to the classical one-dimensional orthogonal polynomials by Jacobi, Gegenbauer, Legendre, Laguerre, and Hermite are given. New one-parameter generating functions for the ''diagonal'' multidimensional Hermite polynomials are derived. The factorial moments and cumulants of the distribution functions related to the Hermite polynomials of two variables with equal indices are expressed in terms of the Legendre and Chebyshev polynomials. Asymptotical formulas for the two-dimensional polynomials with large values of indices and zero arguments are found. The applications to the squeezed one-mode states and to the time-dependent quantum harmonic oscillator are considered.
引用
收藏
页码:4277 / 4294
页数:18
相关论文
共 21 条
[11]  
DODONOV VV, 1985, 30 LEB PHYS I PREPR
[12]   MODES IN N-DIMENSIONAL 1ST-ORDER SYSTEMS [J].
KAUDERER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (09) :4221-4250
[13]  
Malkin I. A., 1979, DYNAMICAL SYMMETRIES
[14]   COHERENT STATES AND TRANSITION PROBABILITIES IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
MALKIN, IA ;
MANKO, VI ;
TRIFONOV, DA .
PHYSICAL REVIEW D, 1970, 2 (08) :1371-&
[15]   LINEAR ADIABATIC INVARIANTS AND COHERENT STATES [J].
MALKIN, IA ;
MANKO, VI ;
TRIFONOV, DA .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (05) :576-582
[16]   SQUEEZED STATES WITH THERMAL NOISE .1. PHOTON-NUMBER STATISTICS [J].
MARIAN, P ;
MARIAN, TA .
PHYSICAL REVIEW A, 1993, 47 (05) :4474-4486
[17]  
OLVER FWJ, 1974, ASYMPTOTICS SPECIAL
[18]   OSCILLATIONS IN PHOTON DISTRIBUTION OF SQUEEZED STATES [J].
SCHLEICH, W ;
WHEELER, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1987, 4 (10) :1715-1722
[19]   SUPERPOSITION OF SQUEEZED COHERENT STATES WITH THERMAL LIGHT [J].
VOURDAS, A .
PHYSICAL REVIEW A, 1986, 34 (04) :3466-3469
[20]   PHOTON-COUNTING DISTRIBUTION IN SQUEEZED STATES [J].
VOURDAS, A ;
WEINER, RM .
PHYSICAL REVIEW A, 1987, 36 (12) :5866-5869