BRAIDED MOMENTUM IN THE Q-POINCARE GROUP

被引:111
作者
MAJID, S
机构
[1] Department of Applied Mathematics, Theoretical Physics, University of Cambridge
[2] SERC, Pembroke College
关键词
D O I
10.1063/1.530154
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The q-Poincare group of M. Schlieker et al. [Z. Phys. C 53, 79 (1992)] is shown to have the structure of a semidirect product and coproduct B X SO(q)(1,3) where B is a braided-quantum group structure on the q-Minkowski space of four-momentum with braided-coproduct DELTAp = p x 1 + 1 x p. Here the necessary B is not a usual kind of quantum group, but one with braid statistics. Similar braided vectors and covectors V(R'), V* (R') exist for a general R-matrix. The abstract structure of the q-Lorentz group is also studied.
引用
收藏
页码:2045 / 2058
页数:14
相关论文
共 23 条
[1]   A QUANTUM LORENTZ GROUP [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (17) :3081-3108
[2]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
[3]  
FADDEEV LD, 1990, LENINGRAD MATH J
[4]   QUANTUM DEFORMATIONS OF D=4 POINCARE AND WEYL ALGEBRA FROM Q-DEFORMED D=4 CONFORMAL ALGEBRA [J].
LUKIERSKI, J ;
NOWICKI, A .
PHYSICS LETTERS B, 1992, 279 (3-4) :299-307
[5]   Q-DEFORMATION OF POINCARE ALGEBRA [J].
LUKIERSKI, J ;
RUEGG, H ;
NOWICKI, A ;
TOLSTOY, VN .
PHYSICS LETTERS B, 1991, 264 (3-4) :331-338
[6]   REAL FORMS OF COMPLEX QUANTUM ANTI-DE-SITTER ALGEBRA UQ(SP(4-C)) AND THEIR CONTRACTION SCHEMES [J].
LUKIERSKI, J ;
NOWICKI, A ;
RUEGG, H .
PHYSICS LETTERS B, 1991, 271 (3-4) :321-328
[7]   QUANTUM AND BRAIDED LINEAR ALGEBRA [J].
MAJID, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (03) :1176-1196
[8]  
MAJID S, 1992, LECT NOTES MATH, V1510, P79
[9]   EXAMPLES OF BRAIDED GROUPS AND BRAIDED MATRICES [J].
MAJID, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3246-3253
[10]   PHYSICS FOR ALGEBRAISTS - NONCOMMUTATIVE AND NONCOCOMMUTATIVE HOPF-ALGEBRAS BY A BICROSSPRODUCT CONSTRUCTION [J].
MAJID, S .
JOURNAL OF ALGEBRA, 1990, 130 (01) :17-64