REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP

被引:152
作者
FILIPPAS, S [1 ]
KOHN, RV [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1002/cpa.3160450703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with positive, blowing-up solutions of the semilinear heat equation u(t) - DELTA-u = u(P) in R(n). Our main contribution is a sort of center manifold analysis for the equation in similarity variables, leading to refined asymptotics for u in a backward space-time parabola near any blowup point. We also explore a connection between the asymptotics of u and the local geometry of the blowup set.
引用
收藏
页码:821 / 869
页数:49
相关论文
共 23 条
[1]  
BEBERNES J, 1988, ANN I H POINCARE-AN, V5, P1
[2]   A RESCALING ALGORITHM FOR THE NUMERICAL-CALCULATION OF BLOWING-UP SOLUTIONS [J].
BERGER, M ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (06) :841-863
[3]   ON THE ASYMPTOTIC SHAPE OF BLOW-UP [J].
BRESSAN, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :947-960
[4]  
BRESSAN A, IN PRESS J DIFF EQNS
[5]  
Carr J., 1981, APPL CTR MANIFOLD TH
[6]   CONVERGENCE, ASYMPTOTIC PERIODICITY, AND FINITE-POINT BLOW-UP IN ONE-DIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
CHEN, XY ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :160-190
[7]  
FILIPPAS S, IN PRESS ANN I H POI
[8]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[9]  
Friedman A., 1988, NONLINEAR DIFFUSION, V12, P301
[10]  
GALAKTIONOV VA, 1991, USSR COMP MATH MATH, V31, P399