BICROSSPRODUCT STRUCTURE OF KAPPA-POINCARE GROUP AND NONCOMMUTATIVE GEOMETRY

被引:685
作者
MAJID, S
RUEGG, H
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] SERC,SLOUGH SL3 9JX,BERKS,ENGLAND
[3] UNIV CAMBRIDGE PEMBROKE COLL,CAMBRIDGE CB2 1RF,ENGLAND
关键词
D O I
10.1016/0370-2693(94)90699-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the kappa-deformed Poincare quantum algebra proposed for elementary particle physics has the structure of a Hopf algebra bicrossproduct U(so(1,3)) T. The algebra is a semidirect product of the classical Lorentz group so(1,3) acting in a deformed way on the momentum sector T. The novel feature is that the coalgebra is also semidirect, with a backreaction of the momentum sector on the Lorentz rotations. Using this, we show that the kappa-Poincare acts covariantly on a kappa-Minkowski space, which we introduce. It turns out necessarily to be deformed and non-commutative. We also connect this algebra with a previous approach to Planck scale physics.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 22 条
[1]   THE DIRAC-COULOMB PROBLEM FOR THE KAPPA-POINCARE QUANTUM GROUP [J].
BIEDENHARN, LC ;
MUELLER, B ;
TARLINI, M .
PHYSICS LETTERS B, 1993, 318 (04) :613-616
[2]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[3]   QUANTUM-MECHANICS ON HOMOGENEOUS SPACES [J].
DOEBNER, HD ;
TOLAR, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) :975-984
[4]  
DOMOKOS G, 1993, JHKTIPAC920027REV PR
[5]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
[6]   FROM KAPPA-POINCARE ALGEBRA TO KAPPA-LORENTZ QUASIGROUP - A DEFORMATION OF RELATIVISTIC SYMMETRY [J].
LUKIERSKI, J ;
RUEGG, H ;
RUHL, W .
PHYSICS LETTERS B, 1993, 313 (3-4) :357-366
[7]   NEW QUANTUM POINCARE ALGEBRA AND KAPPA-DEFORMED FIELD-THEORY [J].
LUKIERSKI, J ;
NOWICKI, A ;
RUEGG, H .
PHYSICS LETTERS B, 1992, 293 (3-4) :344-352
[8]   Q-DEFORMATION OF POINCARE ALGEBRA [J].
LUKIERSKI, J ;
RUEGG, H ;
NOWICKI, A ;
TOLSTOY, VN .
PHYSICS LETTERS B, 1991, 264 (3-4) :331-338
[9]  
MACKEY GW, 1968, INDUCED REPRESENTATI
[10]   HOPF-VONNEUMANN ALGEBRA BICROSS-PRODUCTS, KAC ALGEBRA BICROSS-PRODUCTS, AND THE CLASSICAL YANG-BAXTER EQUATIONS [J].
MAJID, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (02) :291-319