SPATIOTEMPORAL COMPLEXITY OF THE CUBIC QUINTIC NONLINEAR SCHRODINGER-EQUATION

被引:13
作者
HE, XT [1 ]
ZHOU, CT [1 ]
机构
[1] INST APPL PHYS & COMPUTAT MATH,BEIJING 100088,PEOPLES R CHINA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 16期
关键词
D O I
10.1088/0305-4470/26/16/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrability of the cubic-quintic nonlinear Schrodinger equation is investigated numerically. By analytically studying the linear stability of the homogeneous state and numerically solving such a continuum Hamiltonian dynamic system, we show that the quintic nonlinear term leads to a spatiotemporal complexity of wave fields, and illustrate that this behaviour is associated with the stochastic partition of energy in Fourier modes. In addition, we show the presence of the stochastic motion is due to the homoclinic orbit crossings.
引用
收藏
页码:4123 / 4133
页数:11
相关论文
共 22 条
[1]  
ACIOLI LH, 1988, APPL PHYS LETT, V53, P1799
[2]  
Calogero F., 1982, SPECTRAL TRANSFORM S, V1
[3]   A NUMERICAL STUDY OF THE NONLINEAR SCHRODINGER-EQUATION INVOLVING QUINTIC TERMS [J].
CLOOT, A ;
HERBST, BM ;
WEIDEMAN, JAC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (01) :127-146
[4]   QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION [J].
COWAN, S ;
ENNS, RH ;
RANGNEKAR, SS ;
SANGHERA, SS .
CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) :311-315
[5]  
DJOLOS RV, 1981, YAD FIZ, V34, P144
[6]   COHERENCE IN CHAOS AND CAVITON TURBULENCE [J].
DOOLEN, GD ;
DUBOIS, DF ;
ROSE, HA ;
HAFIZI, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :335-338
[7]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1493-1511
[8]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .2. EXACT-SOLUTIONS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :469-497
[9]   EXACT-SOLUTIONS OF THE CUBIC AND QUINTIC NONLINEAR SCHRODINGER-EQUATION FOR A CYLINDRICAL GEOMETRY [J].
GAGNON, L ;
WINTERNITZ, P .
PHYSICAL REVIEW A, 1989, 39 (01) :296-306