NEWTON REPRESENTATION FOR STATIONARY FLOWS OF THE KDV HIERARCHY

被引:15
作者
RAUCHWOJCIECHOWSKI, S
机构
[1] Department of Mathematics, Linköping University
关键词
D O I
10.1016/0375-9601(92)90778-K
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new parametrization for stationary flows of the KdV hierarchy which turns them into a set of Newton equations. In the case of a fifth order KdV flow the equivalence with the integrable case of the Henon-Heiles system leads to a bi-Hamiltonian formulation of the corresponding Newton equations. A simple generalization of its second Poisson bracket yields a new family of integrable potentials in two dimensions.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 9 条
[1]   RESTRICTED FLOWS OF SOLITON HIERARCHIES - COUPLED KDV AND HARRY-DYM CASE [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (21) :5043-5061
[2]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[3]   INTEGRABLE STATIONARY FLOWS - MIURA MAPS AND BI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP ;
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1987, 124 (03) :143-150
[4]   BI-HAMILTONIAN FORMULATION OF THE HENON HEILES SYSTEM AND ITS MULTIDIMENSIONAL EXTENSIONS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 163 (03) :167-172
[5]  
BOGOYAVLENSKY A, 1976, FUNCT ANAL APPL, V10, P8
[6]  
DICKEY LA, 1991, SOLITON EQUATIONS HA, pCH12
[7]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[8]   NEW RESTRICTED FLOWS OF THE KDV HIERARCHY AND THEIR BI-HAMILTONIAN STRUCTURE [J].
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1991, 160 (03) :241-246
[9]  
WHITTAKER ET, 1944, TREATISE ANAL DYNAMI, pCH10