SFAM(Simplified Fuzzy ARTMAP,简化的模糊ARTMAP)神经网络具有自组织反馈、增量式学习和高度复杂映射等特点,是一种较BP神经网络和RBF神经网络等前馈神经网络更优秀的自组织神经网络。为克服SFAM神经网络受输入样本顺序的影响,提高土地评价的精度,提出利用SFAM神经网络集成进行土地评价的方法。并用SFAM神经网络、SFAM神经网络集成、BP神经网络、BP神经网络集成、RBF神经网络和RBF神经网络集成等方法对广东省中山市的土地进行了评价,对评价结果进行了分析和比较,结果表明SFAM神经网络具有比BP神经网络和RBF神经网络更优越的评价性能;对于这三种不同的神经网络,神经网络集成的土壤评价精度分别高于单个神经网络的精度。