采用1种基于Boosting理论的回归建模算法Boosting-偏最小二乘法(BPLS),建立了奶粉中蛋白质含量的近红外模型。先用Kernard-Stone法构建样本训练集和预测集,继对所有样本的近红外光谱进行中心化处理,用BPLS算法进行建模,并对收缩因子v与迭代次数m这2个重要参数进行了优化,当收缩因子为0.9,迭代次数为882时,所建模型的预测结果最好,预测均方根误差(RMSEP)为0.315 9,明显优于偏最小二乘法。结果表明:BPLS算法具有提高模型的预测精度的显著优势,可实现奶粉中蛋白质含量的快速、无损测定。