机器学习在新材料筛选方面的应用进展

被引:4
作者
戚兴怡
胡耀峰
王若愚
杨雅清
赵宇飞
机构
[1] 北京化工大学化学学院化工资源有效利用国家重点实验室
关键词
机器学习; 材料科学; 材料基因组; 高通量计算;
D O I
暂无
中图分类号
TB30 [工程材料一般性问题]; TP181 [自动推理、机器学习];
学科分类号
摘要
新材料产业是许多相关领域技术变革的基础,也是新能源、航空航天、电子信息等高新技术产业发展的先导.传统研发手段由于成本高、效率低、商业化周期长等不利因素无法满足现代社会的发展需求.近年来大数据与人工智能不断深入结合,以数据驱动为核心的机器学习在新材料设计、筛选以及性能预测等方面取得巨大进展,极大促进了新材料的研发与应用.本综述总结了机器学习的基本过程及其在材料科学中常用的算法和相关材料数据库,重点介绍了机器学习在不同功能上的应用以及在催化剂材料、锂离子电池、半导体材料和合金材料等领域的性能预测和材料开发中的最新进展,并对其下一步在新材料应用方面提出展望.
引用
收藏
页码:158 / 174
页数:17
相关论文
共 86 条
  • [11] Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction
    Sun, Zhehao
    Yin, Hang
    Liu, Kaili
    Cheng, Shuwen
    Li, Gang Kevin
    Kawi, Sibudjing
    Zhao, Haitao
    Jia, Guohua
    Yin, Zongyou
    [J]. SMARTMAT, 2022, 3 (01): : 68 - 83
  • [12] High-Efficiency Non-Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry
    Zhang, Qi
    Zheng, Yu Jie
    Sun, Wenbo
    Ou, Zeping
    Odunmbaku, Omololu
    Li, Meng
    Chen, Shanshan
    Zhou, Yongli
    Li, Jing
    Qin, Bo
    Sun, Kuan
    [J]. ADVANCED SCIENCE, 2022, 9 (06)
  • [13] Machine learning in combinatorial polymer chemistry[J] . Gormley Adam J,Webb Michael A.Nature reviews. Materials . 2021
  • [14] Bayesian reaction optimization as a tool for chemical synthesis
    Shields, Benjamin J.
    Stevens, Jason
    Li, Jun
    Parasram, Marvin
    Damani, Farhan
    Alvarado, Jesus I. Martinez
    Janey, Jacob M.
    Adams, Ryan P.
    Doyle, Abigail G.
    [J]. NATURE, 2021, 590 (7844) : 89 - +
  • [15] Origins of structural and electronic transitions in disordered silicon
    Deringer, Volker L.
    Bernstein, Noam
    Csanyi, Gabor
    Ben Mahmoud, Chiheb
    Ceriotti, Michele
    Wilson, Mark
    Drabold, David A.
    Elliott, Stephen R.
    [J]. NATURE, 2021, 589 (7840) : 59 - +
  • [16] A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts
    Chen, An
    Zhang, Xu
    Chen, Letian
    Yao, Sai
    Zhou, Zhen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (41) : 22471 - 22478
  • [17] Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes
    Sendek, Austin D.
    Antoniuk, Evan R.
    Cubuk, Ekin D.
    Ransom, Brandi
    Francisco, Brian E.
    Buettner-Garrett, Josh
    Cui, Yi
    Reed, Evan J.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) : 37957 - 37966
  • [18] Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides[J] . Yuanmiao Sun,Hanbin Liao,Jiarui Wang,Bo Chen,Shengnan Sun,Samuel Jun Hoong Ong,Shibo Xi,Caozheng Diao,Yonghua Du,Jia-Ou Wang,Mark B. H. Breese,Shuzhou Li,Hua Zhang,Zhichuan J. Xu.Nature Catalysis . 2020 (7)
  • [19] Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts
    Weng, Baicheng
    Song, Zhilong
    Zhu, Rilong
    Yan, Qingyu
    Sun, Qingde
    Grice, Corey G.
    Yan, Yanfa
    Yin, Wan-Jian
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [20] Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning
    Fortunato, Michael E.
    Coley, Connor W.
    Barnes, Brian C.
    Jensen, Klavs F.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (07) : 3398 - 3407