基于多时相GF-1遥感影像的作物分类提取

被引:23
作者
贺鹏 [1 ,2 ,3 ]
徐新刚 [2 ,3 ,4 ]
张宝雷 [1 ]
李振海 [2 ,3 ]
金秀良 [2 ,3 ]
张秋阳 [2 ,3 ]
张勇峰 [2 ,3 ]
机构
[1] 山东师范大学人口资源与环境学院
[2] 国家农业信息化工程技术研究中心
[3] 农业部农业信息技术重点实验室
[4] 北京市农业物联网工程技术研究中心
基金
北京市自然科学基金;
关键词
遥感; 作物; 分区; 多时相; 决策树; GF-1;
D O I
10.15933/j.cnki.1004-3268.2016.01.034
中图分类号
S127 [遥感技术在农业上的应用]; S31 [作物生物学原理、栽培技术与方法];
学科分类号
082804 ; 090101 ;
摘要
为了提高遥感影像数据对作物分类提取的精度,更多地反映作物的空间分布结构和物候差异,以黑龙江农垦赵光农场为研究对象,提出一种基于分区与决策树分层分类相结合的作物遥感分类方法,利用2014年高分一号卫星(GF-1)WFV遥感影像数据(4景)开展主要作物的识别分类提取。首先,结合实地调查与影像光谱特征信息的总体分布,将研究区分割成3个子区域(西南区、北部区和东南区);其次,基于多时相遥感影像序列,分析主要作物的反射光谱和植被指数的时序变化特征,构建基于决策树分层分类的主要作物遥感分类模型,成功提取了赵光农场主要作物的空间种植信息。结果表明,2种分类方法的精度都很高,总体精度均在97.00%以上,Kappa系数均在0.900 0以上。分区分类更优于整幅图像非分区分类,总体精度达到98.10%,Kappa系数达到0.960 7;非分区分类总体精度为97.50%,Kappa系数为0.948 3。研究表明,基于分区与决策树分类法相结合的作物分类结果精度,明显优于不使用分区分类的结果。由分区与决策树分层相结合的分类方法能够有效提高黑龙江垦区主要种植作物分类的准确性和精度。
引用
收藏
页码:152 / 159
页数:8
相关论文
共 21 条
[1]   基于时间序列环境卫星影像的作物分类识别 [J].
李鑫川 ;
徐新刚 ;
王纪华 ;
武洪峰 ;
金秀良 ;
李存军 ;
鲍艳松 .
农业工程学报, 2013, 29 (02) :169-176+298
[2]   乡镇尺度的玉米种植面积遥感监测 [J].
郭伟 ;
赵春江 ;
顾晓鹤 ;
黄文江 ;
马智宏 ;
王慧芳 ;
王大成 .
农业工程学报, 2011, 27 (09) :69-74
[3]   基于NDVI时序数据的水稻种植面积遥感监测分析——以江苏省为例 [J].
苗翠翠 ;
江南 ;
彭世揆 ;
吕恒 ;
李扬 ;
张瑜 ;
王妮 ;
李军 .
地球信息科学学报, 2011, 13 (02) :273-280
[4]   基于SPOT/VEGETATION时间序列的冬小麦物候提取方法 [J].
鹿琳琳 ;
郭华东 .
农业工程学报, 2009, 25 (06) :174-179+317
[5]   基于多时相NDVI及特征波段的作物分类研究 [J].
马丽 ;
徐新刚 ;
刘良云 ;
黄文江 ;
贾建华 ;
程一沛 .
遥感技术与应用, 2008, (05) :520-524
[6]   独龙江流域TM图像的分区分类方法探讨 [J].
李石华 ;
王金亮 ;
陈姚 .
遥感信息, 2006, (03) :40-43+93
[7]   MODIS增强型植被指数EVI与NDVI初步比较 [J].
王正兴 ;
刘闯 ;
陈文波 ;
林昕 .
武汉大学学报(信息科学版), 2006, (05) :407-410+427
[8]   植物物候研究进展 [J].
李荣平 ;
周广胜 ;
张慧玲 .
应用生态学报, 2006, (03) :3541-3544
[9]   中国草地植被生物量及其空间分布格局 [J].
朴世龙 ;
方精云 ;
贺金生 ;
肖玉 ;
不详 .
植物生态学报 , 2004, (04) :491-498
[10]   基于GIS的浙江省水稻遥感估产最佳时相选择 [J].
黄敬峰 ;
王人潮 ;
蒋亨显 ;
杨忠恩 .
应用生态学报, 2002, (03) :290-294