木材表面缺陷会严重影响木材的质量、性能和使用价值,对木材表面缺陷分割检测有利于提高木材的利用率,节约现有木材资源,缓解森林资源短缺的压力。针对传统的C-V(Chan-Vese)模型算法不能分割灰度不均匀图像的缺点,本文采用C-V模型与形态学结合的方法与传统的C-V模型算法进行对比试验。与此同时,根据C-V模型和C-V模型结合形态学方法的不足之处,在C-V模型基础上,引入局部拟合函数和高斯核函数,提出了一种基于C-V模型的改进算法,能够有效地克服C-V模型的不足。通过对木材表面缺陷图像分别采用传统C-V模型算法、C-V模型与形态学结合的方法和改进的C-V模型算法进行多组针对单一目标的木材表面缺陷图像的对比试验。结果表明:C-V模型能够将虫眼和活节缺陷图像分割出来,但是对纹理干扰强烈的死节缺陷图像分割困难;运用C-V模型与形态学结合的方法,可以有效地消除分割结果中的细小空洞和噪声,但是仍无法抵抗死节缺陷图像中木材自身纹理的干扰,难以将死节缺陷完整地分割出来;改进的C-V模型算法对木材表面缺陷图像的分割能够减少迭代次数,缩短分割时间,使分割轮廓线更加光滑和完整。通过采用改进C-V模型算法对多目标木材表面缺陷图像进行试验,能够更好地验证改进算法的优越性、有效性和可行性。