地下水文预测中BP网络的模型结构及算法探讨

被引:50
作者
屈忠义
陈亚新
史海滨
魏占民
机构
[1] 内蒙古农业大学水资源与水土工程研究所
[2] 内蒙古农业大学水资源与水土工程研究所 内蒙古呼和浩特 
[3] 内蒙古呼和浩特 
关键词
地下水文预测; 人工神经网络; BP网络模型; 结构与算法;
D O I
10.13243/j.cnki.slxb.2004.02.015
中图分类号
P641.7 [地下水普查与勘探];
学科分类号
0818 ; 081802 ;
摘要
本文探讨了人工神经网络中不同BP网络结构和算法在区域地下水文预测中的应用,实例比较了不同层次结构、学习速率、隐层单元数及不同算法等对收敛效果、模拟预报结果的影响。提出了一些BP模型的设计应用技术,即学习速率的取值范围与BP网络层数有一定关系,层数多,稳定区间较小,一般学习速率取值为0 01~0 1。快速BP算法从训练速度,收敛精度等方面均优于普通BP算法,可作为改进BP算法之一。在此基础上根据黄河河套灌区多年的水文、气象和地下水信息,对灌区多年的年地下水埋深变化进行了模拟,预测了河套灌区节水工程实施后未来灌区地下水位下降的趋势,为大型灌区节水工程改造与BP模型在区域地下水文中的应用提供了参考。
引用
收藏
页码:88 / 93
页数:6
相关论文
共 8 条