Fabrication of nanoporous antireflection surfaces on silicon

被引:67
作者
Huang, Mao-Jung [2 ]
Yang, Chii-Rong [1 ]
Chiou, Yuang-Cherng [2 ]
Lee, Rong-Tsong [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Mechatron Technol, Taipei 106, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
关键词
SANSL; PAECE; nanopore array; antireflection structure;
D O I
10.1016/j.solmat.2008.05.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
After the surface of a silicon wafer has been texturized, the reflectance of the wafer surface can be reduced to increase the power generation efficiency of a silicon-based solar cell. This study presents the integration of self-assembled nanosphere lithography (SANSL) and photo-assisted electrochemical etching (PAECE) to fabricate a nanostructure array with a high aspect ratio on the surface of silicon wafer, to reduce its reflectance. The experimental results show that the etching depth of the fabricated nanopore array structure is about 6.2 mu m and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 68: 1. The weighted mean reflectance of a blank silicon wafer is 40.2% in the wavelength range of 280-890nm. Five-minute PAECE without SANSL reduces the weighted mean reflectance to 5.16%. Five-minute PAECE with SANSL reduces the weighted mean reflectance to 1.73%. Further coating of a 200 A thick silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878%. The novel fabrication technology proposed in this study has the advantage of being low cost, and the fabricated nanostructure array can be employed as an antireflection structure in single crystalline silicon solar cells. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 32 条
[1]   Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography [J].
Bogaerts, W ;
Wiaux, V ;
Taillaert, D ;
Beckx, S ;
Luyssaert, B ;
Bienstman, P ;
Baets, R .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) :928-934
[2]   Fabrication of nanopillars by nanosphere lithography [J].
Cheung, CL ;
Nikolic, RJ ;
Reinhardt, CE ;
Wang, TF .
NANOTECHNOLOGY, 2006, 17 (05) :1339-1343
[3]   Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use [J].
Gangopadhyay, U. ;
Kim, K. ;
Dhungel, S. K. ;
Basu, P. K. ;
Yi, J. .
RENEWABLE ENERGY, 2006, 31 (12) :1906-1915
[4]   Low-porosity porous silicon nanostructures on monocrystalline silicon solar cells [J].
Gonzalez-Diaz, B. ;
Guerrero-Lemus, R. ;
Borchert, D. ;
Hernandez-Rodriguez, C. ;
Martinez-Duart, J. M. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 38 (1-2) :215-218
[5]   Strong polarization in the optical transmission through elliptical nanohole arrays [J].
Gordon, R ;
Brolo, AG ;
McKinnon, A ;
Rajora, A ;
Leathem, B ;
Kavanagh, KL .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[6]   Plasma etched initial pits for electrochemically etched macroporous silicon structures [J].
Grigoras, K ;
Niskanen, AJ ;
Franssila, S .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2001, 11 (04) :371-375
[7]  
Gruning U, 1996, APPL PHYS LETT, V68, P747, DOI 10.1063/1.116729
[8]   Reflection properties of nanostructure-arrayed silicon surfaces [J].
Hadobás, K ;
Kirsch, S ;
Carl, A ;
Acet, M ;
Wassermann, EF .
NANOTECHNOLOGY, 2000, 11 (03) :161-164
[9]   100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask [J].
Kanamori, Y ;
Hane, K ;
Sai, H ;
Yugami, H .
APPLIED PHYSICS LETTERS, 2001, 78 (02) :142-143
[10]   Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures [J].
Kim, DS ;
Hohng, SC ;
Malyarchuk, V ;
Yoon, YC ;
Ahn, YH ;
Yee, KJ ;
Park, JW ;
Kim, J ;
Park, QH ;
Lienau, C .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)