Fabrication of nanoporous antireflection surfaces on silicon

被引:67
作者
Huang, Mao-Jung [2 ]
Yang, Chii-Rong [1 ]
Chiou, Yuang-Cherng [2 ]
Lee, Rong-Tsong [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Mechatron Technol, Taipei 106, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
关键词
SANSL; PAECE; nanopore array; antireflection structure;
D O I
10.1016/j.solmat.2008.05.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
After the surface of a silicon wafer has been texturized, the reflectance of the wafer surface can be reduced to increase the power generation efficiency of a silicon-based solar cell. This study presents the integration of self-assembled nanosphere lithography (SANSL) and photo-assisted electrochemical etching (PAECE) to fabricate a nanostructure array with a high aspect ratio on the surface of silicon wafer, to reduce its reflectance. The experimental results show that the etching depth of the fabricated nanopore array structure is about 6.2 mu m and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 68: 1. The weighted mean reflectance of a blank silicon wafer is 40.2% in the wavelength range of 280-890nm. Five-minute PAECE without SANSL reduces the weighted mean reflectance to 5.16%. Five-minute PAECE with SANSL reduces the weighted mean reflectance to 1.73%. Further coating of a 200 A thick silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878%. The novel fabrication technology proposed in this study has the advantage of being low cost, and the fabricated nanostructure array can be employed as an antireflection structure in single crystalline silicon solar cells. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 32 条
[11]   The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process [J].
Kim, JM ;
Kim, YK .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 81 (02) :239-247
[12]   Focused ion beam nanopatterning for optoelectronic device fabrication [J].
Kim, YK ;
Danner, AJ ;
Raftery, JJ ;
Choquette, KD .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (06) :1292-1298
[13]  
KLEIMANN P, 2000, MATER SCI ENG, V29, pB69
[14]   Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution [J].
Kuo, CW ;
Shiu, JY ;
Chen, PL ;
Somorjai, GA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (37) :9950-9953
[15]   Silicon microstructuring technology [J].
Lang, W .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1996, 17 (01) :1-55
[16]   THE PHYSICS OF MACROPORE FORMATION IN LOW DOPED N-TYPE SILICON [J].
LEHMANN, V .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (10) :2836-2843
[17]   Nanochannel arrays on silicon platforms by electrochemistry [J].
Létant, SE ;
van Buuren, TW ;
Terminello, LJ .
NANO LETTERS, 2004, 4 (09) :1705-1707
[18]   Technological process for a new silicon solar cell structure with honeycomb textured front surface [J].
Manea, Elena ;
Budianu, Elena ;
Purica, Munizer ;
Cernica, Ileana ;
Babarada, Florin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (15) :2312-2318
[19]   Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures [J].
Marty, F ;
Rousseau, L ;
Saadany, B ;
Mercier, B ;
Francais, O ;
Mita, Y ;
Bourouina, T .
MICROELECTRONICS JOURNAL, 2005, 36 (07) :673-677
[20]   Structuring of macroporous silicon for applications as photonic crystals [J].
Müller, F ;
Birner, A ;
Gösele, U ;
Lehmann, V ;
Ottow, S ;
Föll, H .
JOURNAL OF POROUS MATERIALS, 2000, 7 (1-3) :201-204