Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces

被引:102
作者
Chan, IM [1 ]
Cheng, WC [1 ]
Hong, FC [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
D O I
10.1063/1.1428624
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atmospheric plasma treatment of indium tin oxide (ITO) surfaces has been studied and demonstrated to be the most efficient method in improving the performance of vacuum-deposited double-layer organic light-emitting diode devices, among various plasma treatment methods including low-pressure Ar plasma and low-pressure O-2 plasma treatment. Although with a current-voltage characteristic close to low-pressure O-2 plasma treatment, the atmospheric plasma treatment exhibits a 40% increase of electroluminescence efficiency. X-ray photoelectron spectroscopy results show that the atmospheric plasma treatment increases the work function and reduces the carbon contamination of ITO surfaces. Our results suggest that atmospheric plasma treatment is a cheaper, more convenient, and more efficient method than low-pressure O-2 plasma treatment for improving device performance. (C) 2002 American Institute of Physics.
引用
收藏
页码:13 / 15
页数:3
相关论文
共 16 条
[1]   Electroluminescence: enhanced injection using ITO electrodes coated with a self assembled monolayer [J].
Appleyard, SFJ ;
Willis, MR .
OPTICAL MATERIALS, 1998, 9 (1-4) :120-124
[2]   LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Burroughes, JH ;
Cacialli, F .
APPLIED PHYSICS LETTERS, 2000, 77 (19) :3096-3098
[3]   Modification of the hole injection barrier in organic light-emitting devices studied by ultraviolet photoelectron spectroscopy [J].
Ding, XM ;
Hung, LM ;
Cheng, LF ;
Deng, ZB ;
Hou, XY ;
Lee, CS ;
Lee, ST .
APPLIED PHYSICS LETTERS, 2000, 76 (19) :2704-2706
[4]   Effect of a plasma treatment of ITO on the performance of organic electroluminescent devices [J].
Furukawa, K ;
Terasaka, Y ;
Ueda, H ;
Matsumura, M .
SYNTHETIC METALS, 1997, 91 (1-3) :99-101
[5]   Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J].
Hung, LS ;
Tang, CW ;
Mason, MG .
APPLIED PHYSICS LETTERS, 1997, 70 (02) :152-154
[6]   Improvement of organic electroluminescent device performance by in situ plasma treatment of indium-tin-oxide surface [J].
Ishii, M ;
Mori, T ;
Fujikawa, H ;
Tokito, S ;
Taga, Y .
JOURNAL OF LUMINESCENCE, 2000, 87-9 (87) :1165-1167
[7]   Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium-tin-oxide anodes [J].
Kim, JS ;
Friend, RH ;
Cacialli, F .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3084-3086
[8]   Effects of aquaregia treatment of indium-tin-oxide substrates on the behavior of double layered organic light-emitting diodes [J].
Li, F ;
Tang, H ;
Shinar, J ;
Resto, O ;
Weisz, SZ .
APPLIED PHYSICS LETTERS, 1997, 70 (20) :2741-2743
[9]   Analysis of current-voltage characteristics of organic light emitting diodes having a LiF/Al cathode and an Al-hydroxyquinoline/diamine junction [J].
Matsumura, M ;
Jinde, Y .
APPLIED PHYSICS LETTERS, 1998, 73 (20) :2872-2874
[10]   Surface oxidation activates indium tin oxide for hole injection [J].
Milliron, DJ ;
Hill, IG ;
Shen, C ;
Kahn, A ;
Schwartz, J .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) :572-576