Tunable band gap in half-fluorinated bilayer graphene under biaxial strains

被引:5
作者
Hu, C. H. [1 ,2 ]
Zhang, Y. [1 ,2 ]
Liu, H. Y. [3 ]
Wu, S. Q. [1 ,2 ]
Yang, Y. [4 ]
Zhu, Z. Z. [1 ,2 ,5 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China
[3] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[4] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[5] Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilayer graphene; Biaxial strain; Tunable band gap; Direct-to-indirect gap transition; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BERRYS PHASE; STATE;
D O I
10.1016/j.commatsci.2012.06.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Opening and tuning of the band gap of bilayer graphene (BLG) is of particular importance for its utilization in nanoelectronics. We presented here the electronic structures of two types of stoichiometrically half-fluorinated BLGs (i.e. C(2)Fs) as well as those under biaxial compressive and tensile strains. Our results reveal that both C(2)Fs are semiconductor with large direct band gaps in their unstrained configurations. Under biaxial compressive strains, the band gaps of both C(2)Fs can be reduced. However, by applying biaxial tensile strains, both C(2)Fs undergo a direct-to-indirect band gap transition. Electronic nature of the strain-tuned band gaps has been discussed. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 169
页数:5
相关论文
共 36 条
[1]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[4]   Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor [J].
Cheng, S. -H. ;
Zou, K. ;
Okino, F. ;
Gutierrez, H. R. ;
Gupta, A. ;
Shen, N. ;
Eklund, P. C. ;
Sofo, J. O. ;
Zhu, J. .
PHYSICAL REVIEW B, 2010, 81 (20)
[5]   Controlling Energy Gap of Bilayer Graphene by Strain [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
NANO LETTERS, 2010, 10 (09) :3486-3489
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Transport measurements across a tunable potential barrier in graphene [J].
Huard, B. ;
Sulpizio, J. A. ;
Stander, N. ;
Todd, K. ;
Yang, B. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[8]   Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence [J].
Jeon, Ki-Joon ;
Lee, Zonghoon ;
Pollak, Elad ;
Moreschini, Luca ;
Bostwick, Aaron ;
Park, Cheol-Min ;
Mendelsberg, Rueben ;
Radmilovic, Velimir ;
Kostecki, Robert ;
Richardson, Thomas J. ;
Rotenberg, Eli .
ACS NANO, 2011, 5 (02) :1042-1046
[9]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[10]   Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements [J].
Klintenberg, M. ;
Lebegue, S. ;
Katsnelson, M. I. ;
Eriksson, O. .
PHYSICAL REVIEW B, 2010, 81 (08)