Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper

被引:37
作者
Cook, Benjamin S. [1 ]
Fang, Yunnan [2 ]
Kim, Sangkil [1 ]
Le, Taoran [1 ]
Goodwin, W. Brandon [2 ]
Sandhage, Kenneth H. [2 ,3 ]
Tentzeris, Manos M. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
inkjet printed electronics; copper metallization; flexible and recyclable substrates; antennas; RF devices; paper-bearing electronics; NANOPARTICLES; ANTENNAS; ASSEMBLIES; OXIDATION; TRACKS;
D O I
10.1007/s13391-013-3027-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A scalable, low-cost process for fabricating copper-based microwave components on flexible, paper-based substrates is demonstrated. An inkjet printer is used to deposit a catalyst-bearing solution (tailored for such printing) in a desired pattern on commercially-available, recyclable, non-toxic (TeslinA (R)) paper. The catalystbearing paper is then immersed in an aqueous copper-bearing solution to allow for electroless deposition of a compact and conformal layer of copper in the inkjet-derived pattern. Meander monopole antennas comprised of such electroless-deposited copper patterns on paper exhibited comparable performance as for antennas synthesized via inkjet printing of a commercially-available silver nanoparticle ink. However, the solution-based patterning and electroless copper deposition process avoids nozzle-clogging problems and costs associated with noble metal particle-based inks. This process yields compact conductive copper layers without appreciable oxidation and without the need for an elevated temperature, post-deposition thermal treatment commonly required for noble metal particle-based ink processes. This low-cost copper patterning process is readily scalable on virtually any substrate and may be used to generate a variety of copper-based microwave devices on flexible, paper-based substrates.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 36 条
[11]   Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing [J].
Grouchko, Michael ;
Kamyshny, Alexander ;
Magdassi, Shlomo .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (19) :3057-3062
[12]  
Hoffmann R., 1987, HDB MICROWAVE INTEGR
[13]  
Kamyshny A, 2011, OPEN APPL PHYS J, V4, P19, DOI [DOI 10.2174/1874183501104010019, 10.2174/1874183501104010019]
[14]   Influence of ligand structure on the stability and oxidation of copper nanoparticles [J].
Kanninen, Petri ;
Johans, Christoffer ;
Merta, Juha ;
Kontturi, Kyosti .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 318 (01) :88-95
[15]   Absorption layers of ink vehicles for inkjet-printed lines with low electrical resistance [J].
Kim, Changjae ;
Nogi, Masaya ;
Suganuma, Katsuaki ;
Saitou, Yukie ;
Shirakami, Jun .
RSC ADVANCES, 2012, 2 (22) :8447-8451
[16]   The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors [J].
Kim, Inyoung ;
Kim, Jongryoul .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (10)
[17]   All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles [J].
Ko, Seung H. ;
Pan, Heng ;
Grigoropoulos, Costas P. ;
Luscombe, Christine K. ;
Frechet, Jean M. J. ;
Poulikakos, Dimos .
NANOTECHNOLOGY, 2007, 18 (34)
[18]   A review of microstrip T-Resonator method in determining the dielectric properties of printed circuit board materials [J].
Laetti, K.-P. ;
Kettunen, M. ;
Stoem, Juha-Pekka ;
Silventoinen, P. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (05) :1845-1850
[19]   Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability [J].
Magdassi, Shlomo ;
Grouchko, Michael ;
Kamyshny, Alexander .
MATERIALS, 2010, 3 (09) :4626-4638
[20]  
Markovic D., 2007, INSTR MEAS TECHN C P, P1