Noncommutative geometry and gravity

被引:302
作者
Aschieri, Paolo
Dimitrijevic, Marija
Meyer, Frank
Wess, Julius
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
[2] Univ Munich, Fak Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[4] Univ Belgrade, Fac Phys, Belgrade 11000, Serbia Monteneg
关键词
D O I
10.1088/0264-9381/23/6/005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a deformation of infinitesimal diffeomorphisms of a smooth manifold. The deformation is based on a general twist. This leads to a differential geometry on a noncommutative algebra of functions whose product is a star product. The class of noncommutative spaces studied is very rich. Non-anticommutative superspaces are also briefly considered. The differential geometry developed is covariant under deformed diffeomorphisms and is coordinate independent. The main target of this work is the construction of Einstein's equations for gravity on noncommutative manifolds.
引用
收藏
页码:1883 / 1911
页数:29
相关论文
共 76 条
[41]  
HEISENBERG W, 1985, COMMUNICATION, V2
[42]  
IHL M, 2005, HEPTH0506057
[43]  
JAMBOR C, 2004, HEPTH0405268
[44]   Non(anti)commutative superspace [J].
Klemm, D ;
Penati, S ;
Tamassia, L .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (13) :2905-2916
[45]   Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory [J].
Kobayashi, Y ;
Sasaki, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (30) :7175-7188
[46]   Construction of θ-Poincare algebras and their invariants on Mθ [J].
Koch, F ;
Tsouchnika, E .
NUCLEAR PHYSICS B, 2005, 717 (03) :387-403
[47]   MINIMUM PHYSICAL LENGTH AND THE GENERALIZED UNCERTAINTY PRINCIPLE IN STRING THEORY [J].
KONISHI, K ;
PAFFUTI, G ;
PROVERO, P .
PHYSICS LETTERS B, 1990, 234 (03) :276-284
[48]   Chains of twists for classical Lie algebras [J].
Kulish, PP ;
Lyakhovsky, VD ;
del Olmo, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (49) :8671-8684
[49]   Extended Jordanian twists for Lie algebras [J].
Kulish, PP ;
Lyakhovsky, VD ;
Mudrov, AI .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) :4569-4586
[50]  
KULISH PP, 1999, P STEKLOV I MATH, V226, P97