Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum

被引:84
作者
Taylor, EJ
Smith, NL
Turkenburg, JP
D'Souza, S
Gilbert, HJ
Davies, GJ [1 ]
机构
[1] Univ York, Dept Chem, York Struct Biol Lab, York YO10 5YW, N Yorkshire, England
[2] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
关键词
arabinan; arabinofuranosidase; Clostridium thermocellum; glycosidase; ligand specificity; xylan;
D O I
10.1042/BJ20051780
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The digestion of the plant cell wall requires the concerted action of a diverse repertoire of enzyme activities. An important component of these hydrolase consortia are arabinofuranosidases, which release L-arabinofuranose moieties from a range of plant structural polysaccharides. The anaerobic bacterium Clostridium thermocellum, a highly efficient plant cell wall degrader, possesses a single alpha-L-arabinofurranosidase (EC 3.2.1.55), CtAraf51A, located in GH51 (glycoside hydrolase family 51). The crystal structure of the enzyme has been solved in native form and in 'Michaelis' complexes with both alpha-1,5-linked arabinotriose and alpha-1,3 arabinoxylobiose, both forming a hexamer in the asymmetric unit. Kinetic studies reveal that CtAraf51A, in contrast with well-characterized GH51 enzymes including the Cellvibrio Japonicus enzyme [Beylot, McKie, Voragen, Doeswijk-Voragen and Gilbert (2001) Biochem. J. 358, 607-614], catalyses the hydrolysis of alpha-1,5-linked arabino-oligosaccharides and the alpha-1,3 arabinosyl side chain decorations of xylan with equal efficiency. The paucity of direct hydrogen bonds with the aglycone moiety and the flexible conformation adopted by Trp(178), which stacks against the sugar at the +1 subsite, provide a structural explanation for the plasticity in substrate specificity displayed by the clostridial arabinofuranosidase.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 35 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides [J].
Bayer, EA ;
Belaich, JP ;
Shoham, Y ;
Lamed, R .
ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 :521-554
[3]   Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase [J].
Beylot, MH ;
Emami, K ;
McKie, VA ;
Gilbert, HJ ;
Pell, G .
BIOCHEMICAL JOURNAL, 2001, 358 :599-605
[4]   The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity [J].
Beylot, MH ;
McKie, VA ;
Voragen, AGJ ;
Doeswijk-Voragen, CHL ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 2001, 358 :607-614
[5]   Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex [J].
Carvalho, AL ;
Dias, FMV ;
Prates, JAM ;
Nagy, T ;
Gilbert, HJ ;
Davies, GJ ;
Ferreira, LMA ;
Romao, MJ ;
Fontes, CMGA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) :13809-13814
[6]   Recent structural insights into the expanding world of carbohydrate-active enzymes [J].
Davies, GJ ;
Gloster, TM ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (06) :637-645
[7]   Snapshots along an enzymatic reaction coordinate:: Analysis of a retaining β-glycoside hydrolase [J].
Davies, GJ ;
Mackenzie, L ;
Varrot, A ;
Dauter, M ;
Brzozowski, AM ;
Schülein, M ;
Withers, SG .
BIOCHEMISTRY, 1998, 37 (34) :11707-11713
[8]   Mapping the conformational itinerary of β-glycosidases by X-ray crystallography [J].
Davies, GJ ;
Ducros, VMA ;
Varrot, A ;
Zechel, DL .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 :523-527
[9]  
Ducros VMA, 2002, ANGEW CHEM INT EDIT, V41, P2824, DOI 10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO
[10]  
2-G