Bifurcation to strange nonchaotic attractors

被引:45
作者
Yalcinkaya, T [1 ]
Lai, YC [1 ]
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevE.56.1623
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lyapunov exponents. These attractors occur in regimes of nonzero Lebesgue measure in the parameter space of quasiperiodically driven dissipative dynamical systems. We investigate a route to strange nonchaotic attractors in systems with a symmetric invariant subspace. Assuming there is a quasiperiodic torus in the invariant subspace, we show that the loss of the transverse stability of the tonus can lead to the birth of a strange nonchaotic attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors is an extreme type of intermittency. We expect this route to be physically observable, and we present theoretical arguments and numerical examples with both quasiperiodically driven maps and quasiperiodically driven flows. The transition to chaos from the strange nonchaotic behavior is also studied.
引用
收藏
页码:1623 / 1630
页数:8
相关论文
共 52 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[4]   SCALING PROPERTIES OF A STRUCTURE INTERMEDIATE BETWEEN QUASIPERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :1033-1075
[5]   A STRUCTURE INTERMEDIATE BETWEEN QUASI-PERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
EUROPHYSICS LETTERS, 1987, 4 (06) :639-643
[6]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[7]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[8]   PHASE-RESETTING MAP AND THE DYNAMICS OF QUASI-PERIODICALLY FORCED BIOLOGICAL OSCILLATORS [J].
DING, MZ ;
KELSO, JAS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :553-567
[9]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52