Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments

被引:22
作者
Dorazio, Robert M. [1 ]
Hunter, Margaret E. [1 ]
机构
[1] US Geol Survey, Southeast Ecol Sci Ctr, Gainesville, FL 32653 USA
关键词
REAL-TIME PCR; ABSOLUTE QUANTIFICATION; QUANTITATIVE DETECTION; ENVIRONMENTAL DNA; PRECISION; ASSAYS;
D O I
10.1021/acs.analchem.5b02429
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model's parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.
引用
收藏
页码:10886 / 10893
页数:8
相关论文
共 37 条
[11]  
Heyries KA, 2011, NAT METHODS, V8, P649, DOI [10.1038/NMETH.1640, 10.1038/nmeth.1640]
[12]   High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number [J].
Hindson, Benjamin J. ;
Ness, Kevin D. ;
Masquelier, Donald A. ;
Belgrader, Phillip ;
Heredia, Nicholas J. ;
Makarewicz, Anthony J. ;
Bright, Isaac J. ;
Lucero, Michael Y. ;
Hiddessen, Amy L. ;
Legler, Tina C. ;
Kitano, Tyler K. ;
Hodel, Michael R. ;
Petersen, Jonathan F. ;
Wyatt, Paul W. ;
Steenblock, Erin R. ;
Shah, Pallavi H. ;
Bousse, Luc J. ;
Troup, Camille B. ;
Mellen, Jeffrey C. ;
Wittmann, Dean K. ;
Erndt, Nicholas G. ;
Cauley, Thomas H. ;
Koehler, Ryan T. ;
So, Austin P. ;
Dube, Simant ;
Rose, Klint A. ;
Montesclaros, Luz ;
Wang, Shenglong ;
Stumbo, David P. ;
Hodges, Shawn P. ;
Romine, Steven ;
Milanovich, Fred P. ;
White, Helen E. ;
Regan, John F. ;
Karlin-Neumann, George A. ;
Hindson, Christopher M. ;
Saxonov, Serge ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8604-8610
[13]   The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments [J].
Huggett, Jim F. ;
Foy, Carole A. ;
Benes, Vladimir ;
Emslie, Kerry ;
Garson, Jeremy A. ;
Haynes, Ross ;
Hellemans, Jan ;
Kubista, Mikael ;
Mueller, Reinhold D. ;
Nolan, Tania ;
Pfaffl, Michael W. ;
Shipley, Gregory L. ;
Vandesompele, Jo ;
Wittwer, Carl T. ;
Bustin, Stephen A. .
CLINICAL CHEMISTRY, 2013, 59 (06) :892-902
[14]   Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Python']Pythons [J].
Hunter, Margaret E. ;
Oyler-McCance, Sara J. ;
Dorazio, Robert M. ;
Fike, Jennifer A. ;
Smith, Brian J. ;
Hunter, Charles T. ;
Reed, Robert N. ;
Hart, Kristen M. .
PLOS ONE, 2015, 10 (04)
[15]   Detection of large-scale variation in the human genome [J].
Iafrate, AJ ;
Feuk, L ;
Rivera, MN ;
Listewnik, ML ;
Donahoe, PK ;
Qi, Y ;
Scherer, SW ;
Lee, C .
NATURE GENETICS, 2004, 36 (09) :949-951
[16]  
Illian J., 2008, STAT ANAL MODELLING, V70
[17]   Impact of variance components on reliability of absolute quantification using digital PCR [J].
Jacobs, Bart K. M. ;
Goetghebeur, Els ;
Clement, Lieven .
BMC BIOINFORMATICS, 2014, 15
[18]   Theoretical Design and Analysis of Multivolume Digital Assays with Wide Dynamic Range Validated Experimentally with Microfluidic Digital PCR [J].
Kreutz, Jason E. ;
Munson, Todd ;
Huynh, Toan ;
Shen, Feng ;
Du, Wenbin ;
Ismagilov, Rustem F. .
ANALYTICAL CHEMISTRY, 2011, 83 (21) :8158-8168
[19]   Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma [J].
Lun, Fiona M. F. ;
Chiu, Rossa W. K. ;
Chan, K. C. Allen ;
Leung, Tak Yeung ;
Lau, Tze Kin ;
Lo, Y. M. Dennis .
CLINICAL CHEMISTRY, 2008, 54 (10) :1664-1672
[20]  
McCullagh P., 1989, Generalized linear models, Vsecond