Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations

被引:63
作者
He, GQ [1 ]
Zhu, J [1 ]
Zeng, GH [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200030, Peoples R China
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 01期
关键词
D O I
10.1103/PhysRevA.73.012314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum secure communication protocol using correlations of continuous variable Einstein-Podolsky-Rosen (EPR) pairs is proposed. The proposed protocol may implement both quantum key distribution and quantum message encryption by using a nondegenerate optical parametric amplifier (NOPA). The general Gaussian-cloner attack strategy is investigated in detail by employing Shannon information theory. Results show that the proposed scheme is secure, which is guaranteed physically by the correlations of the continuous variable EPR entanglement pairs generated by the NOPA.
引用
收藏
页数:7
相关论文
共 22 条
[1]   Deterministic secure direct communication using entanglement -: art. no. 187902 [J].
Boström, K ;
Felbinger, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :187902/1-187902/4
[2]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[3]   The "ping-pong" protocol can be attacked without eavesdropping [J].
Cai, QY .
PHYSICAL REVIEW LETTERS, 2003, 91 (10)
[4]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[5]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[6]  
Gottesman D, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.022309
[7]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241
[8]   Continuous variable quantum cryptography using coherent states [J].
Grosshans, F ;
Grangier, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[9]   Quantum cryptography with squeezed states [J].
Hillery, M .
PHYSICAL REVIEW A, 2000, 61 (02) :8
[10]   Unconditional security of quantum key distribution over arbitrarily long distances [J].
Lo, HK ;
Chau, HF .
SCIENCE, 1999, 283 (5410) :2050-2056