On a class of bifurcation test functions

被引:9
作者
Seydel, R
机构
[1] Department of Numerical Analysis, University of Ulm
关键词
D O I
10.1016/S0960-0779(96)00130-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Detecting bifurcations frequently amounts to revealing singularities of matrices. For this purpose test functions have been developed. In this paper several test functions are shown to be identical. A criterion for non-singularity of a defining matrix is proved. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:851 / 855
页数:5
相关论文
共 14 条
[1]  
ABBOTT JP, 1977, THESIS AUSTR NATL U
[2]  
ABBOTT JP, 1978, J COMPUT APPL MATH, V4, P19, DOI DOI 10.1016/0771-050X(78)90015-3
[3]  
[Anonymous], INT J BIFURCATION CH
[4]   ON SOLVING NONLINEAR EQUATIONS WITH SIMPLE SINGULARITIES OR NEARLY SINGULAR SOLUTIONS [J].
GRIEWANK, A .
SIAM REVIEW, 1985, 27 (04) :537-563
[5]   CHARACTERIZATION AND COMPUTATION OF GENERALIZED TURNING-POINTS [J].
GRIEWANK, A ;
REDDIEN, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (01) :176-185
[6]   A NOTE ON COMPUTING SIMPLE BIFURCATION POINTS [J].
JANOVSKY, V .
COMPUTING, 1989, 43 (01) :27-36
[7]   NEW METHOD FOR SOLUTION OF EIGENVALUE PROBLEMS [J].
OSBORNE, MR .
COMPUTER JOURNAL, 1964, 7 (03) :228-&
[8]   COMPUTING SIMPLE BIFURCATION POINTS USING A MINIMALLY EXTENDED SYSTEM OF NONLINEAR EQUATIONS [J].
PONISCH, G .
COMPUTING, 1985, 35 (3-4) :277-294
[9]   NUMERICAL COMPUTATION OF BRANCH POINTS IN NON-LINEAR EQUATIONS [J].
SEYDEL, R .
NUMERISCHE MATHEMATIK, 1979, 33 (03) :339-352
[10]   ON DETECTING STATIONARY BIFURCATIONS [J].
Seydel, R. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (02) :335-337