Gate-defined quantum confinement in suspended bilayer graphene

被引:145
作者
Allen, M. T. [1 ]
Martin, J. [1 ]
Yacoby, A. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
关键词
BROKEN-SYMMETRY STATES; RESONATORS; BANDGAP; SPIN;
D O I
10.1038/ncomms1945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall nu=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[2]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]  
Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/NNANO.2009.267, 10.1038/nnano.2009.267]
[5]   ELECTROSTATICS OF EDGE CHANNELS [J].
CHKLOVSKII, DB ;
SHKLOVSKII, BI ;
GLAZMAN, LI .
PHYSICAL REVIEW B, 1992, 46 (07) :4026-4034
[6]   Quantum dot spin qubits in silicon: Multivalley physics [J].
Culcer, Dimitrie ;
Cywinski, Lukasz ;
Li, Qiuzi ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (15)
[7]   Broken-symmetry states and divergent resistance in suspended bilayer graphene [J].
Feldman, Benjamin E. ;
Martin, Jens ;
Yacoby, Amir .
NATURE PHYSICS, 2009, 5 (12) :889-893
[8]   Electron spin decoherence in quantum dots due to interaction with nuclei [J].
Khaetskii, AV ;
Loss, D ;
Glazman, L .
PHYSICAL REVIEW LETTERS, 2002, 88 (18) :1868021-1868024
[9]   Driven coherent oscillations of a single electron spin in a quantum dot [J].
Koppens, F. H. L. ;
Buizert, C. ;
Tielrooij, K. J. ;
Vink, I. T. ;
Nowack, K. C. ;
Meunier, T. ;
Kouwenhoven, L. P. ;
Vandersypen, L. M. K. .
NATURE, 2006, 442 (7104) :766-771
[10]   Approaching the quantum limit of a nanomechanical resonator [J].
LaHaye, MD ;
Buu, O ;
Camarota, B ;
Schwab, KC .
SCIENCE, 2004, 304 (5667) :74-77