The world of the complex Ginzburg-Landau equation

被引:1469
作者
Aranson, IS
Kramer, L
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
关键词
D O I
10.1103/RevModPhys.74.99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the physics community. It describes a vast variety of phenomena from nonlinear waves to second-order phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals and strings in field theory. The authors give an overview of various phenomena described by the complex Ginzburg-Landau equation in one, two, and three dimensions from the point of view of condensed-matter physicists. Their aim is to study the relevant solutions in order to gain insight into nonequilibrium phenomena in spatially extended systems.
引用
收藏
页码:99 / 143
页数:45
相关论文
共 339 条
  • [61] Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation
    Braun, R
    Feudel, F
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 6562 - 6565
  • [62] INTERMITTENCY THROUGH MODULATIONAL INSTABILITY
    BRETHERTON, CS
    SPIEGEL, EA
    [J]. PHYSICS LETTERS A, 1983, 96 (03) : 152 - 156
  • [63] Absolute and convective instabilities of spatially periodic flows
    Brevdo, L
    Bridges, TJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1710): : 1027 - 1064
  • [64] EVOLUTION OF PATTERNS IN THE ANISOTROPIC COMPLEX GINZBURG-LANDAU EQUATION - MODULATIONAL INSTABILITY
    BROWN, R
    FABRIKANT, AL
    RABINOVICH, MI
    [J]. PHYSICAL REVIEW E, 1993, 47 (06) : 4141 - 4150
  • [65] LONG-RANGE ORDER WITH LOCAL CHAOS IN LATTICES OF DIFFUSIVELY COUPLED ODES
    BRUNNET, L
    CHATE, H
    MANNEVILLE, P
    [J]. PHYSICA D, 1994, 78 (3-4): : 141 - 154
  • [66] Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation
    Brusch, L
    Torcini, A
    van Hecke, M
    Zimmermann, MG
    Bär, M
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (3-4) : 127 - 148
  • [67] Modulated amplitude waves and the transition from phase to defect chaos
    Brusch, L
    Zimmermann, MG
    van Hecke, M
    Bär, M
    Torcini, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (01) : 86 - 89
  • [68] BRUSCH L, 2001, UNPUB
  • [69] Buka A., 1996, PATTERN FORMATION LI
  • [70] Bekki-Nozaki amplitude holes in hydrothermal nonlinear waves
    Burguete, J
    Chaté, H
    Daviaud, F
    Mukolobwiez, N
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (16) : 3252 - 3255