Numerical investigation of wind-induced airflow and interunit dispersion characteristics in multistory residential buildings

被引:86
作者
Ai, Z. T. [1 ]
Mak, C. M. [1 ]
Niu, J. L. [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Serv Engn, Kowloon, Hong Kong, Peoples R China
关键词
Interunit dispersion; Multistory residential buildings; Wind-induced airflow; Computational fluid dynamics; Two-layer near-wall approach; Tracer gas; K-EPSILON MODELS; POLLUTANT DISPERSION; TEMPERATURE DISTRIBUTION; NATURAL VENTILATION; BLUFF-BODY; SIMULATION; TUNNEL; PRESSURE; LES; EXPOSURE;
D O I
10.1111/ina.12041
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Abstract Compared with the buoyancy-dominated upward spread, the interunit dispersion of pollutants in wind-dominated conditions is expected to be more complex and multiple. The aim of this study is to investigate the wind-induced airflow and interunit pollutant dispersion in typical multistory residential buildings using computational fluid dynamics. The mathematical model used is the nonstandard k-epsilon model incorporated with a two-layer near-wall modification, which is validated against experiments of previous investigators. Using tracer gas technique, the reentry of exhaust air from each distinct unit to other units on the same building, under different practical conditions, is quantified, and then, the possible dispersion routes are revealed. The units on the floor immediately below the source on the windward side, and vertically above it on the leeward side, where the reentry ratios are up to 4.8% and 14.9%, respectively, should be included on the high-infection list. It is also found that the presence of balconies results in a more turbulent near-wall flow field, which in turn significantly changes the reentry characteristics. Comparison of the dispersion characteristics of the slab-like building and the more complicated building in cross (#) floorplan concludes that distinctive infectious control measures should be implemented in these two types of buildings.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 40 条
[1]   The Effect of Balconies on Ventilation Performance of Low-rise Buildings [J].
Ai, Z. T. ;
Mak, C. M. ;
Niu, J. L. ;
Li, Z. R. ;
Zhou, Q. .
INDOOR AND BUILT ENVIRONMENT, 2011, 20 (06) :649-660
[2]  
[Anonymous], 2010, NSYS FLUENT 13 0 THE
[3]  
[Anonymous], 2010, ANSYS FLUENT US GUID
[4]  
[Anonymous], 2001, 1 BUILD DEP LANDS DE
[5]  
[Anonymous], 2007, ASHRAE HDB
[6]   Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments [J].
Blocken, B. ;
Stathopoulos, T. ;
Saathoff, P. ;
Wang, X. .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2008, 96 (10-11) :1817-1831
[7]   Wind-induced pressure at external surfaces of a high-rise residential building in Hong Kong [J].
Burnett, J ;
Bojic, M ;
Yik, F .
BUILDING AND ENVIRONMENT, 2005, 40 (06) :765-777
[8]   Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations [J].
Chavez, Mauricio ;
Hajra, Bodhisatta ;
Stathopoulos, Ted ;
Bahloul, Ali .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2011, 99 (04) :330-339
[9]  
Etheridge D., 1996, BUILDING VENTILATION
[10]  
Gao C., 2011, THESIS HONG KONG POL