Endothelial progenitor cells in atherosclerosis

被引:106
作者
Du, Fuyong [1 ,2 ]
Zhou, Jun [1 ,2 ]
Gong, Ren [1 ,2 ]
Huang, Xiao [1 ,2 ]
Pansuria, Meghana [1 ,2 ]
Virtue, Anthony [1 ,2 ]
Li, Xinyuan [1 ,2 ]
Wang, Hong [1 ,2 ,3 ]
Yang, Xiao-Feng [1 ,2 ]
机构
[1] Temple Univ, Sch Med, Dept Pharmacol, Philadelphia, PA 19140 USA
[2] Temple Univ, Sch Med, Cardiovasc Res Ctr, Philadelphia, PA 19140 USA
[3] Temple Univ, Sch Med, Thrombosis Res Ctr, Philadelphia, PA 19140 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2012年 / 17卷
基金
美国国家卫生研究院;
关键词
Endothelial progenitor cells; Atherosclerosis; Inflammation; Review; LIPOPROTEIN INDUCES APOPTOSIS; NITRIC-OXIDE SYNTHASE; MARROW-DERIVED CELLS; SMOOTH-MUSCLE-CELLS; HUMAN CD34(+) CELLS; C-REACTIVE PROTEIN; BONE-MARROW; PERIPHERAL-BLOOD; IN-VITRO; EX-VIVO;
D O I
10.2741/4055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs' population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis.
引用
收藏
页码:2327 / 2349
页数:23
相关论文
共 228 条
[31]   Mesenchymal stem cells can be obtained from the human saphena vein [J].
Covas, DT ;
Piccinato, CE ;
Orellana, MD ;
Siufi, JLC ;
Silva, WA ;
Proto-Siqueira, R ;
Rizzatti, EG ;
Neder, L ;
Silva, ARL ;
Rocha, V ;
Zago, MA .
EXPERIMENTAL CELL RESEARCH, 2005, 309 (02) :340-344
[32]   Time-Course Analysis on the Differentiation of Bone Marrow-Derived Progenitor Cells Into Smooth Muscle Cells During Neointima Formation [J].
Daniel, Jan-Marcus ;
Bielenberg, Wiebke ;
Stieger, Philipp ;
Weinert, Soenke ;
Tillmanns, Harald ;
Sedding, Daniel G. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (10) :1890-U43
[33]   Hard Luck Stories: The Reality of Endothelial Progenitor Cells Continues to Fall Short of the Promise [J].
Deb, Arjun ;
Patterson, Cam .
CIRCULATION, 2010, 121 (07) :850-852
[34]   C-KIT, by interacting with the membrane-bound ligand, recruits endothelial progenitor cells to inflamed endothelium [J].
Dentelli, Patrizia ;
Rosso, Arturo ;
Balsamo, Antonina ;
Benedetto, Sofia Colmenares ;
Zeoli, Annarita ;
Pegoraro, Marco ;
Camussi, Giovanni ;
Pegoraro, Luigi ;
Brizzi, Maria Felice .
BLOOD, 2007, 109 (10) :4264-4271
[35]   Role of Inflammation and Insulin Resistance in Endothelial Progenitor Cell Dysfunction [J].
Desouza, Cyrus V. ;
Hamel, Frederick G. ;
Bidasee, Keshore ;
O'Connell, Kelly .
DIABETES, 2011, 60 (04) :1286-1294
[36]   Oxidized low density lipoprotein impairs endothelial progenitor cell function by downregulation of E-selectin and integrin αvβ5 [J].
Di Santo, Stefano ;
Diehm, Nicolas ;
Ortmann, Jana ;
Voelzmann, Jan ;
Yang, Zijiang ;
Keo, Hong-Hak ;
Baumgartner, Iris ;
Kalka, Christoph .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 373 (04) :528-532
[37]   Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFβRI [J].
Diez, Marta ;
Musri, Melina M. ;
Ferrer, Elisabet ;
Barbera, Joan A. ;
Peinado, Victor I. .
CARDIOVASCULAR RESEARCH, 2010, 88 (03) :502-511
[38]   Circulating endothelial cells: Realities and promises in vascular disorders [J].
Dignat-George, F ;
Sampol, J ;
Lip, G ;
Blann, AD .
PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS, 2003, 33 (5-6) :495-499
[39]  
Dimmeler S, 1997, CIRCULATION, V95, P1760
[40]   Unchain my heart: the scientific foundations of cardiac repair [J].
Dimmeler, S ;
Zeiher, AM ;
Schneider, MD .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (03) :572-583