Thermochemical hole burning on a series of N-substituted morpholinium 7,7,8,8-tetracyanoquinodimethane charge-transfer complexes for data storage

被引:23
作者
Ran, CB [1 ]
Peng, HL [1 ]
Zhou, W [1 ]
Yu, XC [1 ]
Liu, ZF [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, CNST, Beijing 100871, Peoples R China
关键词
D O I
10.1021/jp0528616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate here the thermochemical hole burning (THB) effect on a series of N-substituted morpholinium 7,7,8,8-tetracyanoquinodimethane charge-transfer (C-T) complexes for ultra-high-density data storage. A correlation between the decomposition temperature of the charge-transfer complex and the threshold voltage of hole burning was observed: the higher the decomposition temperature, the larger the writing threshold value, suggesting the possibility of molecular design for optimizing the hole burning performance. The macroscopic decomposition properties of these charge-transfer complexes were studied by thermal gravimetry combined with mass spectrometry. Theoretical estimation of the temperature rise induced by scanning tunneling microscopy current heating was also conducted, which indicated that the maximum temperature certainly exceeds the decomposition temperatures of these C-T complexes. These observations are consistent with the thermochernical hole burning mechanism.
引用
收藏
页码:22486 / 22490
页数:5
相关论文
共 30 条
[1]   ANISOTROPY OF THERMOPOWER IN N-METHYL-N-ETHYLMORPHOLINIUM BISTETRACYANOQUINODIMETHANE, MEM(TCNQ)2, IN THE REGION OF THE HIGH-TEMPERATURE PHASE-TRANSITIONS [J].
ALMEIDA, M ;
ALCACER, L ;
OOSTRA, S .
PHYSICAL REVIEW B, 1984, 30 (05) :2839-2844
[2]   CHARGE STORAGE IN A NITRIDE-OXIDE-SILICON MEDIUM BY SCANNING CAPACITANCE MICROSCOPY [J].
BARRETT, RC ;
QUATE, CF .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (05) :2725-2733
[3]   Atomic scale memory at a silicon surface [J].
Bennewitz, R ;
Crain, JN ;
Kirakosian, A ;
Lin, JL ;
McChesney, JL ;
Petrovykh, DY ;
Himpsel, FJ .
NANOTECHNOLOGY, 2002, 13 (04) :499-502
[4]   Ultrahigh-density atomic force microscopy data storage with erase capability [J].
Binnig, G ;
Despont, M ;
Drechsler, U ;
Häberle, W ;
Lutwyche, M ;
Vettiger, P ;
Mamin, HJ ;
Chui, BW ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 74 (09) :1329-1331
[5]   Information storage using supramolecular surface patterns [J].
Cavallini, M ;
Biscarini, F ;
Léon, S ;
Zerbetto, F ;
Bottari, G ;
Leigh, DA .
SCIENCE, 2003, 299 (5606) :531-531
[6]   Terabit-per-square-inch data storage with the atomic force microscope [J].
Cooper, EB ;
Manalis, SR ;
Fang, H ;
Dai, H ;
Matsumoto, K ;
Minne, SC ;
Hunt, T ;
Quate, CF .
APPLIED PHYSICS LETTERS, 1999, 75 (22) :3566-3568
[7]   THE FIELD EMISSION INITIATED VACUUM ARC .2. THE RESISTIVELY HEATED EMITTER [J].
DOLAN, WW ;
DYKE, WP ;
TROLAN, JK .
PHYSICAL REVIEW, 1953, 91 (05) :1054-1057
[8]   SCANNING-TUNNELING-MICROSCOPY OF LAYERED MOLECULAR CONDUCTORS [J].
DVORAK, MA ;
LI, SL ;
WARD, MD .
CHEMISTRY OF MATERIALS, 1994, 6 (08) :1386-1395
[9]   POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
SCHWEIZER, EK .
NATURE, 1990, 344 (6266) :524-526
[10]   Reversible, nanometer-scale conductance transitions in an organic complex [J].
Gao, HJ ;
Sohlberg, K ;
Xue, ZQ ;
Chen, HY ;
Hou, SM ;
Ma, LP ;
Fang, XW ;
Pang, SJ ;
Pennycook, SJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1780-1783