Nonlinear feedback-controlled generalized synchronization of spatial chaos

被引:46
作者
Liu, ST [1 ]
Chen, GR
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2003.12.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the following two spatially generalized Logistic systems: x(m+1,n) + omegax(m,n+1) = 1- mu(1)[(1+omega)x(mn)](2) and y(m+1,n) + omegay(m,n+1) = 1 - mu(2)[(1 + omega)y(mn)](2), where omega is a real constant, and mu(1), and mu(2) are two real parameters. An analytical method is introduced for generalized synchronization of these two spatially chaotic systems, and a range of the coupling constant is specified for the generalized synchronization. Moreover, a nonlinear function is characterized for synchronization stability of the two coupled systems. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 14 条
[1]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[2]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[3]  
Chen G., 1998, CHAOS ORDER PERSPECT
[4]   On spatial periodic orbits and spatial chaos [J].
Chen, GR ;
Liu, ST .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :935-941
[5]   ANALYSIS AND SYNTHESIS OF SYNCHRONOUS PERIODIC AND CHAOTIC SYSTEMS [J].
HE, R ;
VAIDYA, PG .
PHYSICAL REVIEW A, 1992, 46 (12) :7387-7392
[6]   Synchronization of spatiotemporal chaos and its applications [J].
Hu, G ;
Xiao, JH ;
Yang, JZ ;
Xie, FG ;
Qu, ZL .
PHYSICAL REVIEW E, 1997, 56 (03) :2738-2746
[7]  
HU G, 1994, PHYS REV LETT, V72, P68, DOI 10.1103/PhysRevLett.72.68
[8]  
JUNGE L, 2001, PHYS REV E, V64, DOI UNSP 05520414
[9]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[10]   On spatial Lyapunov exponents and spatial chaos [J].
Liu, ST ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (05) :1163-1181