Bound states for spiked harmonic oscillators and truncated Coulomb potentials

被引:24
作者
Mustafa, O [1 ]
Odeh, M [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Phys, Mersin 10, Turkey
关键词
D O I
10.1088/0953-4075/32/12/321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new analytical method to solve for the nonexactly solvable Schrodinger equation. Successfully, it is applied to a class of spiked harmonic oscillators and truncated Coulomb potentials. The utility of this method could be extended to study other systems of atomic, molecular and nuclear physics interest.
引用
收藏
页码:3055 / 3063
页数:9
相关论文
共 25 条
[1]   VARIATIONAL AND PERTURBATIVE SCHEMES FOR A SPIKED HARMONIC-OSCILLATOR [J].
AGUILERANAVARRO, VC ;
ESTEVEZ, GA ;
GUARDIOLA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :99-104
[2]   Perturbed Coulomb potentials in the Klein-Gordon equation via the shifted-l expansion technique [J].
Barakat, T ;
Odeh, M ;
Mustafa, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3469-3479
[3]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[4]   SHIFTED 1/N EXPANSION FOR THE ENERGY-LEVELS OF LASER-DRESSED COULOMB POTENTIAL OF THE HYDROGEN-ATOM [J].
DUTT, R ;
MUKHERJI, U ;
VARSHNI, YP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1985, 18 (16) :3311-3318
[5]   TIGHT UPPER AND LOWER BOUNDS FOR ENERGY EIGENVALUES OF THE SCHRODINGER-EQUATION [J].
FERNANDEZ, FM ;
MA, Q ;
TIPPING, RH .
PHYSICAL REVIEW A, 1989, 39 (04) :1605-1609
[6]   THE SPIKED HARMONIC-OSCILLATOR V(R)=R2 + LAMBDA-R-4 AS A CHALLENGE TO PERTURBATION-THEORY [J].
FLYNN, MF ;
GUARDIOLA, R ;
ZNOJIL, M .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1991, 41 (11) :1019-1029
[7]   Matrix elements for a generalized spiked harmonic oscillator [J].
Hall, RL ;
Saad, N ;
von Keviczky, AB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6345-6352
[8]   Eigenvalue bounds for a class of singular potentials [J].
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :963-967
[9]   APPLICATION OF THE EIGENVALUE MOMENT METHOD TO IMPORTANT ONE-DIMENSIONAL QUANTUM-SYSTEMS [J].
HANDY, CR ;
HAYES, H ;
STEPHENS, DV ;
JOSHUA, J ;
SUMMEROUR, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11) :2635-2649
[10]   PERTURBATION METHOD FOR ATOMS IN INTENSE LIGHT BEAMS [J].
HENNEBERGER, WC .
PHYSICAL REVIEW LETTERS, 1968, 21 (12) :838-+