Random walk to a nonergodic equilibrium concept

被引:49
作者
Bel, G [1 ]
Barkai, E [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-53900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 01期
关键词
D O I
10.1103/PhysRevE.73.016125
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a delta function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
引用
收藏
页数:14
相关论文
共 39 条
[21]  
Lamperti J., 1958, Trans. Am. Math. Soc., V88, P380, DOI [DOI 10.2307/1993222, 10.2307/1993222, DOI 10.1090/S0002-9947-1958-0094863-X]
[22]   Power-law tail distributions and nonergodicity [J].
Lutz, E .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :190602-1
[23]   Fractional calculus and continuous-time finance II: the waiting-time distribution [J].
Mainardi, F ;
Raberto, M ;
Gorenflo, R ;
Scalas, E .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :468-481
[24]   Local and occupation time of a particle diffusing in a random medium [J].
Majumdar, SN ;
Comtet, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :060601/1-060601/4
[25]   Nonergodicity of blinking nanocrystals and other Levy-walk processes [J].
Margolin, G ;
Barkai, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)
[26]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[27]   Models of traps and glass phenomenology [J].
Monthus, C ;
Bouchaud, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :3847-3869
[28]   Critical dimensions of the diffusion equation [J].
Newman, TJ ;
Loinaz, W .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2712-2715
[29]  
Redner S, 2001, GUIDE 1 PASSAGE PROC
[30]   The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times [J].
Scher, H ;
Margolin, G ;
Metzler, R ;
Klafter, J ;
Berkowitz, B .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (05) :5-1