Surface Passivation Effect on the Photoluminescence of ZnO Nanorods

被引:99
作者
Chen, Cong [1 ]
He, Haiping [1 ]
Lu, Yangfan [1 ]
Wu, Kewei [1 ]
Ye, Zhizhen [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
国家教育部博士点专项基金资助;
关键词
ZnO nanorods; Al2O3; coating; hydrogen plasma; photoluminescence; surface passivation; LUMINESCENCE;
D O I
10.1021/am401418b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report an investigation of the impact of surface passivation on the optical properties of ZnO nanorods. Al2O3 coating and hydrogen plasma treatment were used to passivate the surface states. It was found that Al2O3 coating led to the suppression of the deep level emissions, while hydrogen plasma treatment completely quenched the deep level emissions. It was confirmed that the surface states of the as-grown ZnO nanorod arrays indeed contributed to the deep level emissions. Evidence was also provided that shows surface, states have a greater impact on the green emission than the orange emission and may cause the negative thermal quenching behavior. Moreover, the passivation effect was confirmed by the changes of the O 1s and Zn 2p spectra.
引用
收藏
页码:6354 / 6359
页数:6
相关论文
共 28 条
[1]   ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties [J].
Chen, C. Y. ;
Lin, C. A. ;
Chen, M. J. ;
Lin, G. R. ;
He, J. H. .
NANOTECHNOLOGY, 2009, 20 (18)
[2]   X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films [J].
Chen, M ;
Wang, X ;
Yu, YH ;
Pei, ZL ;
Bai, XD ;
Sun, C ;
Huang, RF ;
Wen, LS .
APPLIED SURFACE SCIENCE, 2000, 158 (1-2) :134-140
[3]   Uniaxial tensile strain and exciton-phonon coupling in bent ZnO nanowires [J].
Chen, Rui ;
Ye, Quan-Lin ;
He, T. C. ;
Wu, T. ;
Sun, H. D. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)
[4]   Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide [J].
Cox, SFJ ;
Davis, EA ;
Cottrell, SP ;
King, PJC ;
Lord, JS ;
Gil, JM ;
Alberto, HV ;
Vilao, RC ;
Duarte, JP ;
de Campos, NA ;
Weidinger, A ;
Lichti, RL ;
Irvine, SJC .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2601-2604
[5]   Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation [J].
Dev, A. ;
Niepelt, R. ;
Richters, J. P. ;
Ronning, C. ;
Voss, T. .
NANOTECHNOLOGY, 2010, 21 (06)
[6]   Role of copper in the green luminescence from ZnO crystals [J].
Garces, NY ;
Wang, L ;
Bai, L ;
Giles, NC ;
Halliburton, LE ;
Cantwell, G .
APPLIED PHYSICS LETTERS, 2002, 81 (04) :622-624
[7]   Absolute external luminescence quantum efficiency of zinc oxide [J].
Hauser, Mario ;
Hepting, Alexander ;
Hauschild, Robert ;
Zhou, Huijuan ;
Fallert, Johannes ;
Kalt, Heinz ;
Klingshirn, Claus .
APPLIED PHYSICS LETTERS, 2008, 92 (21)
[8]   Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures [J].
He, Haiping ;
Wang, Yanjie ;
Wang, Jingrui ;
Ye, Zhizhen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (33) :14902-14905
[9]   Green luminescence from Cu-doped ZnO nanorods: Role of Zn vacancies and negative thermal quenching [J].
Huang, X. H. ;
Zhang, C. ;
Tay, C. B. ;
Venkatesan, T. ;
Chua, S. J. .
APPLIED PHYSICS LETTERS, 2013, 102 (11)
[10]   Correlating the enhancement of UV luminescence from solution-grown ZnO nanorods with hydrogen doping [J].
Huang, X. H. ;
Zhan, Z. Y. ;
Pramoda, K. P. ;
Zhang, C. ;
Zheng, L. X. ;
Chua, S. J. .
CRYSTENGCOMM, 2012, 14 (16) :5163-5165