Controlling the surface coverage and arrangement of proteins using particle lithography

被引:14
作者
Ngunjiri, Johnpeter N.
Daniels, Stephanie L.
Li, Jie-Ren
Serem, Wilson K.
Garno, Jayne C. [1 ]
机构
[1] Louisiana State Univ, Baton Rouge, LA 70803 USA
关键词
apoferritin; atomic-force microscopy; bovine serum albumin; ferritin; immunoglobulin-G; nanopatterns; particle lithography; self-assembly;
D O I
10.2217/17435889.3.4.529
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aims: The applicability of particle lithography with monodisperse mesospheres is tested with various proteins to control the surface coverage and dimensions of protein nanopatterns. Methods & Materials: The natural self-assembly of monodisperse spheres provides an efficient, high-throughput route to prepare protein nanopatterns. Mesospheres assemble spontaneously into organized crystalline layers when dried on flat substrates, which supply a structural frame or template to direct the placement of proteins. The template particles are displaced with a simple rinsing step to disclose periodic arrays of protein nanopatterns on surfaces. Results & Discussion: The proteins are attached securely to the surface, forming nanopatterns with a measured thickness of a single layer. The morphology and diameter of the protein nanostructures can be tailored by selecting the diameter of the mesospheres and choosing the protein concentration. Conclusions: Particle lithography is shown to be a practical, highly reproducible method for patterning proteins on surfaces of mica, glass and gold. High-throughput patterning was achieved with ferritin, apoferritin, bovine serum albumin and immunoglobulin-G. Depending on the ratio of proteins to mesospheres, either porous films or ring structures were produced. This approach can be applied for fundamental investigations of protein-binding interactions of biological systems in surface-bound bioassays and biosensor surfaces.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 59 条
[1]   Large area protein nanopatterning for biological applications [J].
Agheli, H. ;
Malmstrom, J. ;
Larsson, E. M. ;
Textor, M. ;
Sutherland, D. S. .
NANO LETTERS, 2006, 6 (06) :1165-1171
[2]   Detection of antigen-antibody binding events with the atomic force microscope [J].
Allen, S ;
Chen, XY ;
Davies, J ;
Davies, MC ;
Dawkes, AC ;
Edwards, JC ;
Roberts, CJ ;
Sefton, J ;
Tendler, SJB ;
Williams, PM .
BIOCHEMISTRY, 1997, 36 (24) :7457-7463
[3]   Nanopatterns with biological functions [J].
Blattler, Thomas ;
Huwiler, Christoph ;
Ochsner, Mirjam ;
Staedler, Brigitte ;
Solak, Harun ;
Voeroes, Janos ;
Grandin, H. Michelle .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (08) :2237-2264
[4]   TiO2 nanoparticle arrays prepared using a nanosphere lithography technique [J].
Bullen, HA ;
Garrett, SJ .
NANO LETTERS, 2002, 2 (07) :739-745
[5]   Large-scale fabrication of protein nanoarrays based on nanosphere lithography [J].
Cai, YG ;
Ocko, BM .
LANGMUIR, 2005, 21 (20) :9274-9279
[6]   Fabrication of 2D ordered arrays of cobalt silicide nanodots on (001)Si substrates [J].
Cheng, S. L. ;
Lu, S. W. ;
Wong, S. L. ;
Chang, C. C. ;
Chen, H. .
JOURNAL OF CRYSTAL GROWTH, 2007, 300 (02) :473-477
[7]   Two-dimensional polymer nanopattern by using particle-assisted soft lithography [J].
Choi, DG ;
Jang, SG ;
Yu, HK ;
Yang, SM .
CHEMISTRY OF MATERIALS, 2004, 16 (18) :3410-3413
[8]   Magnetic Langmuir-Blodgett films of ferritin with different iron contents [J].
Clemente-Leon, Miguel ;
Coronado, Eugenio ;
Soriano-Portillo, Alejandra ;
Colacio, Enrique ;
Dominguez-Vera, Jose M. ;
Galvez, Natividad ;
Madueno, Rafael ;
Martin-Romero, Maria T. .
LANGMUIR, 2006, 22 (16) :6993-7000
[9]   The structure of ferritin cores determined by electron nanodiffraction [J].
Cowley, JM ;
Janney, DE ;
Gerkin, RC ;
Buseck, PR .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 131 (03) :210-216
[10]   Optical transmission through hexagonal arrays of subwavelength holes in thin metal films [J].
Ctistis, G. ;
Patoka, P. ;
Wang, X. ;
Kempa, K. ;
Giersig, M. .
NANO LETTERS, 2007, 7 (09) :2926-2930