Hierarchically structured graphene-based supercapacitor electrodes

被引:56
作者
Dong, Lei [1 ]
Chen, Zhongxin [1 ]
Yang, Dong [1 ]
Lu, Hongbin [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
来源
RSC ADVANCES | 2013年 / 3卷 / 44期
关键词
TERNARY COMPOSITE; NANOSTRUCTURED ELECTRODES; QUANTUM CAPACITANCE; ENERGY-CONVERSION; DOPED GRAPHENE; PERFORMANCE; OXIDE; POLYANILINE; NANOCOMPOSITES; NITROGEN;
D O I
10.1039/c3ra44357d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The performance of supercapacitor electrodes is determined largely by their components and structure. Graphene has revealed the intriguing potential in developing high performance electrodes. To optimize the electrochemical properties, hierarchically structured graphene networks have been utilized to prepare the electrode of supercapacitors and exhibited the specific surface area larger than the theoretical value and the specific capacitance close to the maximum of single-layer graphene nanosheets. When graphene is combined with other high capacitance components such as nanostructured metal oxide and conductive polymers, the hierarchical composite electrodes exhibited a large development space for high performance supercapacitors. Herein, we review their recent advances and discuss the effect of molecular structures (oxygen functionalities, heteroatom doping), deposited metal oxide and conductive polymer nanoparticles on the performance of hierarchically structured graphene supercapacitor electrodes.
引用
收藏
页码:21183 / 21191
页数:9
相关论文
共 58 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Graphene Materials for Electrochemical Capacitors [J].
Chen, Ji ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1244-1253
[3]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[4]   In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors [J].
Cui, Zhiming ;
Guo, Chun Xian ;
Yuan, Weiyong ;
Li, Chang Ming .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (37) :12823-12828
[5]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Multifunctional superhydrophobic composite films from a synergistic self-organization process [J].
Fang, Ming ;
Tang, Zhiyong ;
Lu, Hongbin ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :109-114
[8]   Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7098-7105
[9]   Renewing Functionalized Graphene as Electrodes for High-Performance Supercapacitors [J].
Fang, Yan ;
Luo, Bin ;
Jia, Yuying ;
Li, Xianglong ;
Wang, Bin ;
Song, Qi ;
Kang, Feiyu ;
Zhi, Linjie .
ADVANCED MATERIALS, 2012, 24 (47) :6348-6355
[10]   Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes [J].
He, Yongmin ;
Chen, Wanjun ;
Li, Xiaodong ;
Zhang, Zhenxing ;
Fu, Jiecai ;
Zhao, Changhui ;
Xie, Erqing .
ACS NANO, 2013, 7 (01) :174-182