Low energy plasma enhanced chemical vapor deposition

被引:58
作者
Kummer, M
Rosenblad, C
Dommann, A
Hackbarth, T
Höck, G
Zeuner, M
Müller, E
von Känel, H
机构
[1] ETH Honggerberg, Festkorperphys Lab, CH-8093 Zurich, Switzerland
[2] Interstate Univ Appl Sci NTB, CH-9471 Buchs, Switzerland
[3] DaimlerChrysler Res & Technol, D-89081 Ulm, Germany
[4] Siemens AG, D-89081 Ulm, Germany
[5] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
来源
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY | 2002年 / 89卷 / 1-3期
关键词
PECVD; epitaxy; SiGe; MOSFET; MODFET; MODQW;
D O I
10.1016/S0921-5107(01)00801-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a state-of-the-art growth technique, introduced recently for SiGe heteroepitaxy. At present, its most important application is the fast fabrication of high-quality relaxed SiGe buffer layers, The process is based on chemical vapor deposition (CVD), enhanced by a high intensity, low energy plasma, which is why we call it 'low energy plasma enhanced CVD' (LEPECVD). The key features of the process are a wide range of epitaxial growth rates ( < 1 (A) over cap s(-1) up to at least 10 nm s(-1)) independent of the substrate temperature in the range of 500-750 degreesC and easy control of film composition, governed solely by the mixture of the precursor gases (SiH4 and GeH4). Possible applications of LEPECVD include electronic devices, such as modulation doped SiGe FETs (SiGe-MODFETs) or strained-layer SiGe MOSFETs, all based on relaxed buffer layers and targeting the fast-growing RF device market. Another field of applications is high-performance SiGe solar cells. For economic production. all these devices rely on fast, high-quality epitaxy, which is the strength of LEPECVD. The process, developed on the experimental system for 4-inch wafers, is now being transferred to a 300-mm single wafer reactor for production. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:288 / 295
页数:8
相关论文
共 24 条
[1]   Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing [J].
Currie, MT ;
Samavedam, SB ;
Langdo, TA ;
Leitz, CW ;
Fitzgerald, EA .
APPLIED PHYSICS LETTERS, 1998, 72 (14) :1718-1720
[2]   LATTICE PARAMETER + DENSITY IN GERMANIUM-SILICON ALLOYS [J].
DISMUKES, JP ;
PAFF, RJ ;
EKSTROM, L .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (10) :3021-&
[3]   TOTALLY RELAXED GEXSI1-X LAYERS WITH LOW THREADING DISLOCATION DENSITIES GROWN ON SI SUBSTRATES [J].
FITZGERALD, EA ;
XIE, YH ;
GREEN, ML ;
BRASEN, D ;
KORTAN, AR ;
MICHEL, J ;
MII, YJ ;
WEIR, BE .
APPLIED PHYSICS LETTERS, 1991, 59 (07) :811-813
[4]   Alternatives to thick MBE-grown relaxed SiGe buffers [J].
Hackbarth, T ;
Herzog, HJ ;
Zeuner, M ;
Höck, G ;
Fitzgerald, BA ;
Bulsara, M ;
Rosenblad, C ;
von Kanel, H .
THIN SOLID FILMS, 2000, 369 (1-2) :148-151
[5]   Device quality of in situ plasma cleaning for silicon molecular beam epitaxy [J].
Hansch, W ;
Eisele, I ;
Kibbel, H ;
Konig, U ;
Ramm, J .
JOURNAL OF CRYSTAL GROWTH, 1995, 157 (1-4) :100-104
[6]   High hole mobility in Si0.17Ge0.83 channel metal-oxide-semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition [J].
Höck, G ;
Kohn, E ;
Rosenblad, C ;
von Känel, H ;
Herzog, HJ ;
König, U .
APPLIED PHYSICS LETTERS, 2000, 76 (26) :3920-3922
[7]   EXTREMELY HIGH-ELECTRON-MOBILITY IN SI/SIGE MODULATION-DOPED HETEROSTRUCTURES [J].
ISMAIL, K ;
ARAFA, M ;
SAENGER, KL ;
CHU, JO ;
MEYERSON, BS .
APPLIED PHYSICS LETTERS, 1995, 66 (09) :1077-1079
[8]   Hydrogen plasma chemical cleaning of metallic substrates and silicon wafers [J].
Korner, N ;
Beck, E ;
Dommann, A ;
Onda, N ;
Ramm, J .
SURFACE & COATINGS TECHNOLOGY, 1995, 76-77 (1-3) :731-737
[9]  
LEGOUES FK, 1991, PHYS REV LETT, V66, P1903
[10]  
METZGER RA, 1999, COMPOUND SEMICONDUCT, V5