Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

被引:47
作者
Sun, Jie [1 ]
Lindvall, Niclas [1 ]
Cole, Matthew T. [2 ]
Wang, Teng [1 ]
Booth, Tim J. [3 ]
Boggild, Peter [3 ]
Teo, Kenneth B. K. [4 ]
Liu, Johan [1 ]
Yurgens, August [1 ]
机构
[1] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
[2] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
[3] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[4] AIXTRON Nanoinstruments Ltd, Cambridge CB24 4FQ, England
基金
瑞典研究理事会;
关键词
AMORPHOUS-CARBON FILMS; CATALYTIC GRAPHITIZATION; RAMAN-SPECTROSCOPY; WEAK-LOCALIZATION; MAGNETORESISTANCE; NANOTUBES;
D O I
10.1063/1.3686135
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp(2) hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13% of electric-field effect. The Hall mobility is similar to 40 cm(2)/ Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size similar to 10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3686135]
引用
收藏
页数:6
相关论文
共 51 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   WEAK LOCALIZATION IN THIN-FILMS - A TIME-OF-FLIGHT EXPERIMENT WITH CONDUCTION ELECTRONS [J].
BERGMANN, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 107 (01) :1-58
[3]   An X-ray study of carbon black [J].
Biscoe, J ;
Warren, BE .
JOURNAL OF APPLIED PHYSICS, 1942, 13 (06) :364-371
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization [J].
Cao, Helin ;
Yu, Qingkai ;
Jauregui, L. A. ;
Tian, J. ;
Wu, W. ;
Liu, Z. ;
Jalilian, R. ;
Benjamin, D. K. ;
Jiang, Z. ;
Bao, J. ;
Pei, S. S. ;
Chen, Yong P. .
APPLIED PHYSICS LETTERS, 2010, 96 (12)
[6]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[7]   Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor [J].
Dahl, JK ;
Barocas, VH ;
Clough, DE ;
Weimer, AW .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (04) :377-386
[8]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[9]   Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition [J].
Ding, Xuli ;
Ding, Guqiao ;
Xie, Xiaoming ;
Huang, Fuqiang ;
Jiang, Mianheng .
CARBON, 2011, 49 (07) :2522-2525
[10]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758