Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices

被引:462
作者
Cheng, Zengguang [1 ]
Zhou, Qiaoyu [1 ]
Wang, Chenxuan [1 ]
Li, Qiang [1 ]
Wang, Chen [1 ]
Fang, Ying [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; electrical properties; thermal annealing; wet-chemical treatment; sensor; SUSPENDED GRAPHENE; LAYER GRAPHENE; TRANSISTORS; ADSORPTION; MONOLAYERS; SCATTERING; GRAPHITE; BINDING; PHASE; SIO2;
D O I
10.1021/nl103977d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By combining atomic force microscopy and transport measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO2) substrates. Thermal treatment above 300 degrees C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO2 substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid beta-peptide (A beta-42) on graphene were electrically measured in real time.
引用
收藏
页码:767 / 771
页数:5
相关论文
共 29 条
[1]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[2]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[5]   Dielectric Screening Enhanced Performance in Graphene FET [J].
Chen, Fang ;
Xia, Jilin ;
Ferry, David K. ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (07) :2571-2574
[6]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[7]   Suspended Graphene Sensors with Improved Signal and Reduced Noise [J].
Cheng, Zengguang ;
Li, Qiang ;
Li, Zhongjun ;
Zhou, Qiaoyu ;
Fang, Ying .
NANO LETTERS, 2010, 10 (05) :1864-1868
[8]   Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording [J].
Cohen-Karni, Tzahi ;
Qing, Quan ;
Li, Qiang ;
Fang, Ying ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (03) :1098-1102
[9]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215