Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires

被引:290
作者
Kholmanov, Iskandar N. [1 ,2 ,3 ]
Magnuson, Carl W. [1 ,2 ]
Aliev, Ali E. [4 ]
Li, Huifeng [1 ,2 ]
Zhang, Bin [1 ,2 ]
Suk, Ji Won [1 ,2 ]
Zhang, Li Li [1 ,2 ]
Peng, Eric [1 ,2 ]
Mousavi, S. Hossein [5 ,6 ]
Khanikaev, Alexander B. [5 ,6 ]
Piner, Richard [1 ,2 ]
Shvets, Gennady [5 ,6 ]
Ruoff, Rodney S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Brescia, Dept Chem & Phys, CNR IDASC Sensor Lab, I-25133 Brescia, Italy
[4] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA
[5] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[6] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
关键词
Graphene; nanowires; transparent conductive films; electrochromic devices; CHEMICAL-VAPOR-DEPOSITION; TRANSPORT; MOBILITY;
D O I
10.1021/nl302870x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polycrystalline graphene grown by chemical vapor deposition (CVD) on metals and transferred onto arbitrary substrates has line defects and disruptions such as wrinkles, ripples, and folding that adversely affect graphene transport properties through the scattering of the charge carriers. It is found that graphene assembled with metal nanowires (NWs) dramatically decreases the resistance of graphene films. Graphene/NW films with a sheet resistance comparable to that of the intrinsic resistance of graphene have been obtained and tested as a transparent electrode replacing indium tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films into EC devices demonstrates their potential for a wide range of optoelectronic device applications.
引用
收藏
页码:5679 / 5683
页数:5
相关论文
共 37 条
[1]   Nanostructured materials for electrochromic devices [J].
Aliev, AE ;
Shin, HW .
SOLID STATE IONICS, 2002, 154 :425-431
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[6]   A case study of optical properties and structure of sol-gel derived nanocrystalline electrochromic WO3 films [J].
Deepa, M. ;
Srivastava, A. K. ;
Kar, M. ;
Agnihotry, S. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (09) :1885-1893
[7]   Stretchable Graphene: A Close Look at Fundamental Parameters through Biaxial Straining [J].
Ding, Fei ;
Ji, Hengxing ;
Chen, Yonghai ;
Herklotz, Andreas ;
Doerr, Kathrin ;
Mei, Yongfeng ;
Rastelli, Armando ;
Schmidt, Oliver G. .
NANO LETTERS, 2010, 10 (09) :3453-3458
[8]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Boron nitride substrates for high mobility chemical vapor deposited graphene [J].
Gannett, W. ;
Regan, W. ;
Watanabe, K. ;
Taniguchi, T. ;
Crommie, M. F. ;
Zettl, A. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)