Approaching ballistic transport in suspended graphene

被引:2716
作者
Du, Xu [1 ]
Skachko, Ivan [1 ]
Barker, Anthony [1 ]
Andrei, Eva Y. [1 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
关键词
D O I
10.1038/nnano.2008.199
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The discovery of graphene(1,2) raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties(3-6) of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching 200,000 cm(2) V-1 s(-1) for carrier densities below 5 x 10(9) cm(-2). Such values cannot be attained in semiconductors or non-suspended graphene. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures. At higher temperatures, above 100 K, we observe the onset of thermally induced long-range scattering.
引用
收藏
页码:491 / 495
页数:5
相关论文
共 29 条
[1]   Specular andreev Reflection in graphene [J].
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Exchange-induced charge inhomogeneities in rippled neutral graphene [J].
Brey, L. ;
Palacios, J. J. .
PHYSICAL REVIEW B, 2008, 77 (04)
[5]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[8]   Charge transport and inhomogeneity near the minimum conductivity point in graphene [J].
Cho, Sungjae ;
Fuhrer, Michael S. .
PHYSICAL REVIEW B, 2008, 77 (08)
[9]   Subharmonic gap structure in short ballistic graphene junctions [J].
Cuevas, J. C. ;
Yeyati, A. Levy .
PHYSICAL REVIEW B, 2006, 74 (18)
[10]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems