Evidence that miRNAs are different from other RNAs

被引:527
作者
Zhang, BH
Pan, XP
Cox, SB
Cobb, GP
Anderson, TA [1 ]
机构
[1] Texas Tech Univ, TIEHH, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Dept Environm Toxicol, Lubbock, TX 79409 USA
关键词
MicroRNA; plant; tRNA; rRNA; mRNA; bioinformatics; minimal folding free energy index; MFEI;
D O I
10.1007/s00018-005-5467-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An examination of 513 known pre-miRNAs and 237 other RNAs (tRNA, rRNA, and mRNA) revealed that miRNAs were significantly different from other RNAs (p < 0.001). miRNA genes were less conserved than other RNA genes, although their mature miRNA sequences were highly conserved. The A+U content of pre-miRNAs was higher than non-coding RNA (p < 0.001), but lower than mRNAs. The nucleotides in pre-miRNAs formed more hydrogen bonds and base pairs than in other RNAs. miRNAs had higher negative adjusted minimal folding free energies than other RNAs except tRNAs (p < 0.001). The MFE index (MFEI) was a sufficient criterion to distinguish miRNAs from all coding and non-coding RNAs (p < 0.001). The MFEI for miRNAs was 0.97, significantly higher than tRNAs (0.64), rRNAs (0.59), or mRNAs (0.65). Our findings should facilitate the prediction and identification of new miRNAs using computational and experimental strategies.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 43 条
[1]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[2]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[3]   microRNAs: Tiny regulators with great potential [J].
Ambros, V .
CELL, 2001, 107 (07) :823-826
[4]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[5]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[8]   Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
BIOINFORMATICS, 2004, 20 (17) :2911-2917
[9]   A computational view of microRNAs and their targets [J].
Brown, JR ;
Sanseau, P .
DRUG DISCOVERY TODAY, 2005, 10 (08) :595-601
[10]   Role of microRNAs in plant and animal development [J].
Carrington, JC ;
Ambros, V .
SCIENCE, 2003, 301 (5631) :336-338