Interfacial capacitance of graphene: Correlated differential capacitance and in situ electrochemical Raman spectroscopy study

被引:49
作者
Zhong, Jin-Hui [1 ,2 ]
Liu, Jun-Yang [1 ,2 ]
Li, Qiongyu [3 ]
Li, Mian-Gang [1 ,2 ]
Zeng, Zhi-Cong [1 ,2 ]
Hu, Shu [1 ,2 ]
Wu, De-Yin [1 ,2 ]
Cai, Weiwei [4 ]
Ren, Bin [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Dept Phys, Lab Nanoscale Condense Matter Phys, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Dept Phys, Lab Nanoscale Condense Matter Phys, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
Graphene; Interfacial capacitance; Quantum capacitance; Raman; HETEROGENEOUS ELECTRON-TRANSFER; CARBON NANOTUBES; GRAPHITE-ELECTRODES; PYROLYTIC-GRAPHITE; DOUBLE-LAYER; SCATTERING; MONOLAYER; CRYSTALS; DENSITY; STATES;
D O I
10.1016/j.electacta.2013.04.004
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The origin of the low interfacial capacitance of carbon-based materials is a long standing puzzle. The space charge capacitance and the quantum capacitance models have been proposed to interpret the phenomena. However, the physical origin of the capacitance is still unclear. In this study, we performed the differential capacitance and in situ electrochemical Raman spectroscopic measurement of single layer graphene in aqueous solutions to study the origin of the interfacial capacitance of graphene. The capacitance was found to have a minimum value of similar to 4.5 mu F cm(-2) in NaCl solutions and increased linearly with respect to both sides of the minimum. The Raman parameters of single layer graphene, including the frequency and band width of the G band, the frequency of the 2D band and the intensity ratio of 2D to G bands (I-2D/I-G), show the similar potential dependent behavior as the capacitance curve. The clear correlation between the Raman parameters and the capacitance can be understood by the same physical origin of carrier concentration (n) of graphene. This study shows that the carrier concentration is a decisive factor that determines the quantum capacitance and thus the total capacitance of graphene in the electrochemical systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 761
页数:8
相关论文
共 43 条
[1]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[2]   Doped Graphene as Tunable Electron-Phonon Coupling Material [J].
Attaccalite, Claudio ;
Wirtz, Ludger ;
Lazzeri, Michele ;
Mauri, Francesco ;
Rubio, Angel .
NANO LETTERS, 2010, 10 (04) :1172-1176
[3]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[5]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[8]   Ionic Screening of Charged-Impurity Scattering in Graphene [J].
Chen, Fang ;
Xia, Jilin ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (04) :1621-1625
[9]   Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition [J].
Chen, Shanshan ;
Ji, Hengxing ;
Chou, Harry ;
Li, Qiongyu ;
Li, Hongyang ;
Suk, Ji Won ;
Piner, Richard ;
Liao, Lei ;
Cai, Weiwei ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2013, 25 (14) :2062-2065
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215