Some cyclic covers of complements of arrangements

被引:8
作者
Cohen, DC [1 ]
Orlik, P
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
hyperplane arrangement; Milnor fibration; cyclic cover; local system; polynomial periodicity;
D O I
10.1016/S0166-8641(01)00038-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the Milnor fiber of a central arrangement, we study the cohomology of a family of cyclic covers of the complement of an arbitrary arrangement. We give an explicit proof of the polynomial periodicity of the Betti numbers of the members of this family of cyclic covers. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 21 条
[1]   REPRESENTATION VARIETIES OF ARITHMETIC GROUPS AND POLYNOMIAL PERIODICITY OF BETTI NUMBERS [J].
ADAMS, S .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 88 (1-3) :73-124
[2]  
[Anonymous], 1992, SINGULARITIES TOPOLO
[3]  
AOMOTO K, 1994, HYPERGEOMETRIC FUNCT
[4]   Homology of iterated semidirect products of free groups [J].
Cohen, DC ;
Suciu, AI .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 126 (1-3) :87-120
[5]   Characteristic varieties of arrangements [J].
Cohen, DC ;
Suciu, AI .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :33-53
[6]   ON MILNOR FIBRATIONS OF ARRANGEMENTS [J].
COHEN, DC ;
SUCIU, AI .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 :105-119
[7]  
Cohen DC, 2000, MATH RES LETT, V7, P299
[8]  
DENHAM G, 1999, THESIS U MICHIGAN
[9]  
Falk M., 1997, ANN COMB, V1, P135, DOI DOI 10.1007/BF02558471
[10]  
Gelfand I.M., 1986, SOV MATH DOKL, V33, P573