Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion

被引:129
作者
Holmes, Daniel L. [1 ]
Lancaster, Alex K. [2 ]
Lindquist, Susan [2 ,3 ,4 ]
Halfmann, Randal [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
[2] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
关键词
SACCHAROMYCES-CEREVISIAE; PSEUDOHYPHAL GROWTH; DRUG-RESISTANCE; GENE-EXPRESSION; TRANSCRIPTION; EVOLUTION; PROTEIN; HSP104; PSI+; FLOCCULATION;
D O I
10.1016/j.cell.2013.02.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prion proteins undergo self-sustaining conformational conversions that heritably alter their activities. Many of these proteins operate at pivotal positions in determining how genotype is translated into phenotype. But the breadth of prion influences on biology and their evolutionary significance are just beginning to be explored. We report that a prion formed by the Mot3 transcription factor, [MOT3(+)], governs the acquisition of facultative multicellularity in the budding yeast Saccharomyces cerevisiae. The traits governed by [MOT3(+)] involved both gains and losses of Mot3 regulatory activity. [MOT3(+)]-dependent expression of FLO11, a major determinant of cell-cell adhesion, produced diverse lineage-specific multicellular phenotypes in response to nutrient deprivation. The prions themselves were induced by ethanol and eliminated by hypoxia-conditions that occur sequentially in the natural respiro-fermentative cycles of yeast populations. These data demonstrate that prions can act as environmentally responsive molecular determinants of multicellularity and contribute to the natural morphological diversity of budding yeast.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 73 条
[1]   A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins [J].
Alberti, Simon ;
Halfmann, Randal ;
King, Oliver ;
Kapila, Atul ;
Lindquist, Susan .
CELL, 2009, 137 (01) :146-158
[2]   Chromatin Modulation at the FLO11 Promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf Complexes [J].
Barrales, Ramon R. ;
Korber, Philipp ;
Jimenez, Juan ;
Ibeas, Jose I. .
GENETICS, 2012, 191 (03) :791-U220
[3]  
Bauer F. F., 2000, South African Journal of Enology and Viticulture, V21, P27
[4]   Metabolic trade-offs and the maintenance of the fittest and the flattest [J].
Beardmore, Robert E. ;
Gudelj, Ivana ;
Lipson, David A. ;
Hurst, Laurence D. .
NATURE, 2011, 472 (7343) :342-346
[5]   A heritable switch in carbon source utilization driven by an unusual yeast prion [J].
Brown, Jessica C. S. ;
Lindquist, Susan .
GENES & DEVELOPMENT, 2009, 23 (19) :2320-2332
[6]   Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae [J].
Brueckner, Stefan ;
Moesch, Hans-Ulrich .
FEMS MICROBIOLOGY REVIEWS, 2012, 36 (01) :25-58
[7]   JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update [J].
Bryne, Jan Christian ;
Valen, Eivind ;
Tang, Man-Hung Eric ;
Marstrand, Troels ;
Winther, Ole ;
da Piedade, Isabelle ;
Krogh, Anders ;
Lenhard, Boris ;
Sandelin, Albin .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D102-D106
[8]   Single-Cell Analysis Reveals that Noncoding RNAs Contribute to Clonal Heterogeneity by Modulating Transcription Factor Recruitment [J].
Bumgarner, Stacie L. ;
Neuert, Gregor ;
Voight, Benjamin F. ;
Symbor-Nagrabska, Anna ;
Grisafi, Paula ;
van Oudenaarden, Alexander ;
Fink, Gerald R. .
MOLECULAR CELL, 2012, 45 (04) :470-482
[9]   Prediction of phenotype and gene expression for combinations of mutations [J].
Carter, Gregory W. ;
Prinz, Susanne ;
Neou, Christine ;
Shelby, J. Patrick ;
Marzolf, Bruz ;
Thorsson, Vesteinn ;
Galitski, Timothy .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1) :1-9
[10]   Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology [J].
Casalone, E ;
Barberio, C ;
Cappellini, L ;
Polsinelli, M .
RESEARCH IN MICROBIOLOGY, 2005, 156 (02) :191-200