Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

被引:1137
作者
Mounet, Nicolas [1 ,2 ]
Gibertini, Marco [1 ,2 ]
Schwaller, Philippe [1 ,2 ]
Campi, Davide [1 ,2 ]
Merkys, Andrius [1 ,2 ,3 ]
Marrazzo, Antimo [1 ,2 ]
Sohier, Thibault [1 ,2 ]
Castelli, Ivano Eligio [1 ,2 ]
Cepellotti, Andrea [1 ,2 ]
Pizzi, Giovanni [1 ,2 ]
Marzari, Nicola [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[3] Vilnius Univ, Inst Biotechnol, Vilnius, Lithuania
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC-STRUCTURE; MATERIALS DESIGN; DATABASE; HETEROSTRUCTURES; PSEUDOPOTENTIALS; FERROMAGNETISM; MONOLAYER; CRYSTALS; GRAPHENE;
D O I
10.1038/s41565-017-0035-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
引用
收藏
页码:246 / +
页数:9
相关论文
共 76 条
[11]   Van der Waals density functional: An appropriate exchange functional [J].
Cooper, Valentino R. .
PHYSICAL REVIEW B, 2010, 81 (16)
[12]   Covalent radii revisited [J].
Cordero, Beatriz ;
Gomez, Veronica ;
Platero-Prats, Ana E. ;
Reves, Marc ;
Echeverria, Jorge ;
Cremades, Eduard ;
Barragan, Flavia ;
Alvarez, Santiago .
DALTON TRANSACTIONS, 2008, (21) :2832-2838
[13]   Predicting crystal structures with data mining of quantum calculations [J].
Curtarolo, S ;
Morgan, D ;
Persson, K ;
Rodgers, J ;
Ceder, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)
[14]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
[15]   Pseudopotentials periodic table: From H to Pu [J].
Dal Corso, Andrea .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 95 :337-350
[16]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[17]  
Drozdov IK, 2014, NAT PHYS, V10, P664, DOI [10.1038/NPHYS3048, 10.1038/nphys3048]
[18]   The inverse hand-structure problem of finding an atomic configuration with given electronic properties [J].
Franceschetti, A ;
Zunger, A .
NATURE, 1999, 402 (6757) :60-63
[19]   Pseudopotentials for high-throughput DFT calculations [J].
Garrity, Kevin F. ;
Bennett, Joseph W. ;
Rabe, Karin M. ;
Vanderbilt, David .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 :446-452
[20]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425