Van der Waals density functional: An appropriate exchange functional

被引:427
作者
Cooper, Valentino R. [1 ]
机构
[1] Div Mat Sci & Technol, Oak Ridge, TN 37830 USA
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 16期
关键词
GENERALIZED GRADIENT APPROXIMATION; NONCOVALENT INTERACTIONS; STACKING INTERACTIONS; INTERACTION ENERGIES; ACCURATE; DNA; MODEL;
D O I
10.1103/PhysRevB.81.161104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this Rapid Communication, an exchange functional which is compatible with the nonlocal Rutgers-Chalmers correlation functional [van der Waals density functional (vdW-DF)] is presented. This functional, when employed with vdW-DF, demonstrates remarkable improvements on intermolecular separation distances while further improving the accuracy of vdW-DF interaction energies. The key to the success of this three-parameter functional is its reduction in short-range exchange repulsion through matching to the gradient expansion approximation in the slowly varying/high-density limit while recovering the large reduced gradient, s, limit set in the revised Perdew-Burke-Ernzerhof (revPBE) exchange functional. This augmented exchange functional could be a solution to long-standing issues of vdW-DF lending to further applicability of density-functional theory to the study of relatively large, dispersion bound (van der Waals) complexes.
引用
收藏
页数:4
相关论文
共 29 条
[1]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[2]   Computing dispersion interactions in density functional theory [J].
Cooper, V. R. ;
Kong, L. ;
Langreth, D. C. .
PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009), 2010, 3 (03) :1417-1430
[3]   Stacking interactions and the twist of DNA [J].
Cooper, Valentino R. ;
Thonhauser, Timo ;
Puzder, Aaron ;
Schroder, Elsebeth ;
Lundqvist, Bengt I. ;
Langreth, David C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (04) :1304-1308
[4]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[5]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[6]   Noncovalent interactions between graphene sheets and in multishell (Hyper)Fullerenes [J].
Grimme, Stefan ;
Muck-Lichtenfeld, Christian ;
Antony, Jens .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (30) :11199-11207
[7]   Linear-scaling self-consistent implementation of the van der Waals density functional [J].
Gulans, Andris ;
Puska, Martti J. ;
Nieminen, Risto M. .
PHYSICAL REVIEW B, 2009, 79 (20)
[8]   Predicting C-H/π interactions with nonlocal density functional theory [J].
Hooper, Joe ;
Cooper, Valentino R. ;
Thonhauser, Timo ;
Romero, Nichols A. ;
Zerilli, Frank ;
Langreth, David C. .
CHEMPHYSCHEM, 2008, 9 (06) :891-895
[9]   Dispersion interactions in density-functional theory [J].
Johnson, Erin R. ;
Mackie, Iain D. ;
DiLabio, Gino A. .
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2009, 22 (12) :1127-1135
[10]   Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs [J].
Jurecka, P ;
Sponer, J ;
Cerny, J ;
Hobza, P .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (17) :1985-1993