Zinc Oxide Nanostructures and High Electron Mobility Nanocomposite Thin Film Transistors

被引:46
作者
Li, Flora M. [1 ]
Hsieh, Gen-Wen [1 ]
Dalal, Sharvari [1 ]
Newton, Marcus C. [2 ]
Stott, James E. [2 ]
Hiralal, Pritesh [1 ]
Nathan, Arokia [2 ]
Warburton, Paul A. [2 ]
Unalan, Husnu Emrah [1 ]
Beecher, Paul [1 ]
Flewitt, Andrew J. [1 ]
Robinson, Ian [2 ]
Amaratunga, Gehan [1 ]
Milne, William I. [1 ]
机构
[1] Univ Cambridge, Elect Engn Div, Cambridge CB3 0FA, England
[2] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会;
关键词
High electron mobility; nanocomposite thin-film transistors (TFTs); nanowires (NWs); organic semiconductors; tetrapods; Zinc Oxide (ZnO);
D O I
10.1109/TED.2008.2005180
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the synthesis of zinc oxide (ZnO) nanostructures and examines the performance of nanocomposite thin-film transistors (TFTs) fabricated using ZnO dispersed in both n- and p-type polymer host matrices. The ZnO nanostructures considered here comprise nanowires and tetrapods and were synthesized using vapor phase deposition techniques involving the carbothermal reduction of solid-phase zinc-containing compounds. Measurement results of nanocomposite TFTs based on dispersion of ZnO nanorods in an n-type organic semiconductor ([6, 6]-phenyl-C-61-butyric acid methyl ester) show electron field-effect mobilities in the range 0.3-0.6 cm(2)V(-1)s(-1), representing an approximate enhancement by as much as a factor of 40 from the pristine state. The on/off current ratio of the nanocomposite TFTs approach 10(6) at saturation with off-currents on the order of 10 pA. The results presented here, although preliminary, show a highly promising enhancement for realization of high-performance solution-processable n-type organic TFTs.
引用
收藏
页码:3001 / 3011
页数:11
相关论文
共 63 条
[1]   Ambipolar organic field-effect transistors based on a solution-processed methanofullerene [J].
Anthopoulos, TD ;
Tanase, C ;
Setayesh, S ;
Meijer, EJ ;
Hummelen, JC ;
Blom, PWM ;
de Leeuw, DM .
ADVANCED MATERIALS, 2004, 16 (23-24) :2174-+
[2]   Review of zincblende ZnO: Stability of metastable ZnO phases [J].
Ashrafi, A. ;
Jagadish, C. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[3]   High electron mobility in ladder polymer field-effect transistors [J].
Babel, A ;
Jenekhe, SA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (45) :13656-13657
[4]   Large-quantity free-standing ZnO nanowires [J].
Banerjee, D ;
Lao, JY ;
Wang, DZ ;
Huang, JY ;
Ren, ZF ;
Steeves, D ;
Kimball, B ;
Sennett, M .
APPLIED PHYSICS LETTERS, 2003, 83 (10) :2061-2063
[5]   Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor [J].
Bo, XZ ;
Lee, CY ;
Strano, MS ;
Goldfinger, M ;
Nuckolls, C ;
Blanchet, GB .
APPLIED PHYSICS LETTERS, 2005, 86 (18) :1-3
[6]   Determination of the epitaxial growth of zinc oxide nanowires on sapphire by grazing incidence synchrotron X-ray diffraction [J].
Campos, L. C. ;
Dalal, S. H. ;
Baptista, D. L. ;
Magalhaes-Paniago, R. ;
Ferlauto, A. S. ;
Milne, W. I. ;
Ladeira, L. O. ;
Lacerda, R. G. .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[7]   Solution-processed n-type organic thin-film transistors with high field-effect mobility [J].
Chikamatsu, M ;
Nagamatsu, S ;
Yoshida, Y ;
Saito, K ;
Yase, K ;
Kikuchi, K .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[8]   Gas-sensing properties of thick film based on ZnO nano-tetrapods [J].
Chu, XF ;
Jiang, DL ;
Djurisic, AB ;
Yu, HL .
CHEMICAL PHYSICS LETTERS, 2005, 401 (4-6) :426-429
[9]   Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties [J].
Colli, A. ;
Fasoli, A. ;
Beecher, P. ;
Servati, P. ;
Pisana, S. ;
Fu, Y. ;
Flewitt, A. J. ;
Milne, W. I. ;
Robertson, J. ;
Ducati, C. ;
De Franceschi, S. ;
Hofmann, S. ;
Ferrari, A. C. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
[10]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152