Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location

被引:98
作者
Cavalcanti-Adam, Elisabetta Ada [1 ,2 ]
Aydin, Daniel [1 ,2 ]
Hirschfeld-Warneken, Vera Catherine [1 ,2 ]
Spatz, Joachim Pius [1 ,2 ]
机构
[1] Max Planck Inst Met Res, Dept New Mat & Biosyst, D-70569 Stuttgart, Germany
[2] Heidelberg Univ, Dept Biophys Chem, D-70569 Stuttgart, Germany
来源
HFSP JOURNAL | 2008年 / 2卷 / 05期
关键词
D O I
10.2976/1.2976662
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During adhesion and spreading, cells form micrometer-sized structures comprising transmembrane and intracellular protein clusters, giving rise to the formation of what is known as focal adhesions. Over the past two decades these structures have been extensively studied to elucidate their organization, assembly, and molecular composition, as well as to determine their functional role. Synthetic materials decorated with biological molecules, such as adhesive peptides, are widely used to induce specific cellular responses dependent on cell adhesion. Here, we focus on how surface patterning of such bioactive materials and organization at the nanoscale level has proven to be a useful strategy for mimicking both physical and chemical cues present in the extracellular space controlling cell adhesion and fate. This strategy for designing synthetic cellular environments makes use of the observation that most cell signaling events are initiated through recruitment and clustering of transmembrane receptors by extracellular-presented signaling molecules. These systems allow for studying protein clustering in cells and characterizing the signaling response induced by, e. g., integrin activation. We review the findings about the regulation of cell adhesion and focal adhesion assembly by micro-and nanopatterns and discuss the possible use of substrate stiffness and patterning in mimicking both physical and chemical cues of the extracellular space.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 85 条
[11]   Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands [J].
Cavalcanti-Adam, Elisabetta Ada ;
Volberg, Tova ;
Micoulet, Alexandre ;
Kessler, Horst ;
Geiger, Benjamin ;
Spatz, Joachim Pius .
BIOPHYSICAL JOURNAL, 2007, 92 (08) :2964-2974
[12]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[13]   Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels [J].
Comisar, WA ;
Hsiong, SX ;
Kong, HJ ;
Mooney, DJ ;
Linderman, JJ .
BIOMATERIALS, 2006, 27 (10) :2322-2329
[14]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[15]   Cells react to nanoscale order and symmetry in their surroundings [J].
Curtis, ASG ;
Gadegaard, N ;
Dalby, MJ ;
Riehle, MO ;
Wilkinson, CDW ;
Aitchison, G .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (01) :61-65
[16]   Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands [J].
Dalby, MJ ;
Yarwood, SJ ;
Riehle, MO ;
Johnstone, HJH ;
Affrossman, S ;
Curtsi, ASG .
EXPERIMENTAL CELL RESEARCH, 2002, 276 (01) :1-9
[17]   Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography [J].
Dalby, MJ ;
Giannaras, D ;
Riehle, MO ;
Gadegaard, N ;
Affrossman, S ;
Curtis, ASG .
BIOMATERIALS, 2004, 25 (01) :77-83
[18]  
Dee K C, 1995, Tissue Eng, V1, P135, DOI 10.1089/ten.1995.1.135
[19]  
Dee KC, 1998, J BIOMED MATER RES, V40, P371, DOI 10.1002/(SICI)1097-4636(19980605)40:3<371::AID-JBM5>3.0.CO
[20]  
2-C