Localized states in the generalized Swift-Hohenberg equation

被引:268
作者
Burke, John [1 ]
Knobloch, Edgar [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 05期
关键词
D O I
10.1103/PhysRevE.73.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Swift-Hohenberg equation with quadratic and cubic nonlinearities exhibits a remarkable wealth of stable spatially localized states. The presence of these states is related to a phenomenon called homoclinic snaking. Numerical computations are used to illustrate the changes in the localized solution as it grows in spatial extent and to determine the stability properties of the resulting states. The evolution of the localized states once they lose stability is illustrated using direct simulations in time.
引用
收藏
页数:15
相关论文
共 47 条
[1]   Crystallization kinetics and self-induced pinning in cellular patterns [J].
Aranson, IS ;
Malomed, BA ;
Pismen, LM ;
Tsimring, LS .
PHYSICAL REVIEW E, 2000, 62 (01) :R5-R8
[2]   Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation [J].
Barashenkov, IV ;
Cross, S ;
Malomed, BA .
PHYSICAL REVIEW E, 2003, 68 (05)
[3]   Simulations of localized states of stationary convection in 3He-4He mixtures -: art. no. 244501 [J].
Batiste, O ;
Knobloch, E .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[4]   Simulations of oscillatory convection in 3He-4He mixtures in moderate aspect ratio containers -: art. no. 064102 [J].
Batiste, O ;
Knobloch, E .
PHYSICS OF FLUIDS, 2005, 17 (06) :1-14
[5]  
BATISTE O, IN PRESS J FLUID MEC, P37203
[6]   NONADIABATIC EFFECTS IN CONVECTION [J].
BENSIMON, D ;
SHRAIMAN, BI ;
CROQUETTE, V .
PHYSICAL REVIEW A, 1988, 38 (10) :5461-5464
[7]   Three-dimensional magnetohydrodynamic convectons [J].
Blanchflower, S ;
Weiss, N .
PHYSICS LETTERS A, 2002, 294 (5-6) :297-303
[8]   Magnetohydrodynamic convectons [J].
Blanchflower, S .
PHYSICS LETTERS A, 1999, 261 (1-2) :74-81
[9]   Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation [J].
Budd, CJ ;
Kuske, R .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) :73-95
[10]  
Buffoni B., 1996, Journal of Dynamics and Differential Equations, V8, P221