antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers

被引:616
作者
Blin, Kai [1 ]
Medema, Marnix H. [2 ,3 ]
Kazempour, Daniyal [1 ]
Fischbach, Michael A. [4 ,5 ]
Breitling, Rainer [3 ,6 ]
Takano, Eriko [2 ,6 ]
Weber, Tilmann [1 ]
机构
[1] Univ Tubingen, Interfac Inst Microbiol & Infect Med Tubingen, D-72076 Tubingen, Germany
[2] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Dept Microbial Physiol, NL-9747 AG Groningen, Netherlands
[3] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Groningen Bioinformat Ctr, NL-9747 AG Groningen, Netherlands
[4] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA
[6] Univ Manchester, Fac Life Sci, Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England
关键词
GENE-CLUSTER; SEQUENCE; POLYKETIDE; IDENTIFICATION; BIOSYNTHESIS; DATABASE;
D O I
10.1093/nar/gkt449
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved antiSMASH 2.0 release, available at http://antismash.secondarymetabolites.org/. For the new version, antiSMASH was entirely re-designed using a plug-and-play concept that allows easy integration of novel predictor or output modules. antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs. Moreover, direct analysis of protein sequences is now possible. antiSMASH 2.0 has also been equipped with the capacity to detect additional classes of secondary metabolites, including oligosaccharide antibiotics, phenazines, thiopeptides, homoserine lactones, phosphonates and furans. The algorithm for predicting the core structure of the cluster end product is now also covering lantipeptides, in addition to polyketides and non-ribosomal peptides. The antiSMASH ClusterBlast functionality has been extended to identify sub-clusters involved in the biosynthesis of specific chemical building blocks. The new features currently make antiSMASH 2.0 the most comprehensive resource for identifying and analyzing novel secondary metabolite biosynthetic pathways in microorganisms.
引用
收藏
页码:W204 / W212
页数:9
相关论文
共 31 条
  • [1] SBSPKS: structure based sequence analysis of polyketide synthases
    Anand, Swadha
    Prasad, M. V. R.
    Yadav, Gitanjali
    Kumar, Narendra
    Shehara, Jyoti
    Ansari, Md. Zeeshan
    Mohanty, Debasisa
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : W487 - W496
  • [2] [Anonymous], INT J MED MICROBIOL
  • [3] METHODS FOR IN SILICO PREDICTION OF MICROBIAL POLYKETIDE AND NONRIBOSOMAL PEPTIDE BIOSYNTHETIC PATHWAYS FROM DNA SEQUENCE DATA
    Bachmann, Brian O.
    Ravel, Jacques
    [J]. COMPLEX ENZYMES IN MICROBIAL NATURAL PRODUCT BIOSYNTHESIS, PART A: OVERVIEW ARTICLES AND PEPTIDES, 2009, 458 : 181 - 217
  • [4] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
  • [5] NORINE:: a database of nonribosomal peptides
    Caboche, Segolene
    Pupin, Maude
    Leclere, Valerie
    Fontaine, Arnaud
    Jacques, Philippe
    Kucherov, Gregory
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D326 - D331
  • [6] ClusterMine360: a database of microbial PKS/NRPS biosynthesis
    Conway, Kyle R.
    Boddy, Christopher N.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D402 - D407
  • [7] Microbial genome mining answers longstanding biosynthetic questions
    Crawford, Jason M.
    Clardy, Jon
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (20) : 7589 - 7590
  • [8] BAGEL2: mining for bacteriocins in genomic data
    de Jong, Anne
    van Heel, Auke J.
    Kok, Jan
    Kuipers, Oscar P.
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : W647 - W651
  • [9] Accelerated Profile HMM Searches
    Eddy, Sean R.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (10)
  • [10] Fedorova Natalie D, 2012, Methods Mol Biol, V944, P23, DOI 10.1007/978-1-62703-122-6_2