Ultrasensitive magnetic field detection using a single artificial atom

被引:65
作者
Bal, M. [1 ,2 ]
Deng, C. [1 ,2 ]
Orgiazzi, J. -L. [2 ,3 ]
Ong, F. R. [1 ,2 ]
Lupascu, A. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
CIRCUIT QUANTUM ELECTRODYNAMICS; FLUX QUBIT; DC-SQUID; NOISE; MAGNETOMETRY; DIAMOND; AMPLIFICATION; SPIN;
D O I
10.1038/ncomms2332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient detection of magnetic fields is central to many areas of research and technology. High-sensitivity detectors are commonly built using direct-current superconducting quantum interference devices or atomic systems. Here we use a single artificial atom to implement an ultrasensitive magnetometer with micron range size. The artificial atom, a superconducting two-level system, is operated similarly to atom and diamond nitrogen-vacancy centre-based magnetometers. The high sensitivity results from quantum coherence combined with strong coupling to magnetic field. We obtain a sensitivity of 3.3 pT Hz(-1/2) for a frequency of 10 MHz. We discuss feasible improvements to increase sensitivity by one order of magnitude. The intrinsic sensitivity of this detector at frequencies in the 100 kHz-10MHz range compares favourably with direct-current superconducting quantum interference devices and atomic magnetometers of equivalent spatial resolution. This result illustrates the potential of artificial quantum systems for sensitive detection and related applications.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator [J].
Abdumalikov, Abdufarrukh A., Jr. ;
Astafiev, Oleg ;
Nakamura, Yasunobu ;
Pashkin, Yuri A. ;
Tsai, JawShen .
PHYSICAL REVIEW B, 2008, 78 (18)
[2]  
Arcizet O, 2011, NAT PHYS, V7, P879, DOI [10.1038/NPHYS2070, 10.1038/nphys2070]
[3]   LOW-NOISE MODULAR MICROSUSCEPTOMETER USING NEARLY QUANTUM LIMITED DC SQUIDS [J].
AWSCHALOM, DD ;
ROZEN, JR ;
KETCHEN, MB ;
GALLAGHER, WJ ;
KLEINSASSER, AW ;
SANDSTROM, RL ;
BUMBLE, B .
APPLIED PHYSICS LETTERS, 1988, 53 (21) :2108-2110
[4]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[5]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[6]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[7]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[8]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[9]   Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J].
Castellanos-Beltran, M. A. ;
Irwin, K. D. ;
Hilton, G. C. ;
Vale, L. R. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (12) :929-931
[10]   SCANNING HALL PROBE MICROSCOPY [J].
CHANG, AM ;
HALLEN, HD ;
HARRIOTT, L ;
HESS, HF ;
KAO, HL ;
KWO, J ;
MILLER, RE ;
WOLFE, R ;
VANDERZIEL, J ;
CHANG, TY .
APPLIED PHYSICS LETTERS, 1992, 61 (16) :1974-1976